| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmatcollpw.p |
|
| 2 |
|
pmatcollpw.c |
|
| 3 |
|
pmatcollpw.b |
|
| 4 |
|
pmatcollpw.m |
|
| 5 |
|
pmatcollpw.e |
|
| 6 |
|
pmatcollpw.x |
|
| 7 |
|
pmatcollpw.t |
|
| 8 |
1
|
ply1assa |
|
| 9 |
8
|
3ad2ant2 |
|
| 10 |
9
|
adantr |
|
| 11 |
10
|
3ad2ant1 |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
|
simp2 |
|
| 16 |
|
simp3 |
|
| 17 |
|
simp2 |
|
| 18 |
17
|
adantr |
|
| 19 |
|
simp3 |
|
| 20 |
19
|
adantr |
|
| 21 |
|
simpr |
|
| 22 |
1 2 3 12 14
|
decpmatcl |
|
| 23 |
18 20 21 22
|
syl3anc |
|
| 24 |
23
|
3ad2ant1 |
|
| 25 |
12 13 14 15 16 24
|
matecld |
|
| 26 |
|
crngring |
|
| 27 |
26
|
3ad2ant2 |
|
| 28 |
1
|
ply1sca |
|
| 29 |
27 28
|
syl |
|
| 30 |
29
|
eqcomd |
|
| 31 |
30
|
fveq2d |
|
| 32 |
31
|
eleq2d |
|
| 33 |
32
|
adantr |
|
| 34 |
33
|
3ad2ant1 |
|
| 35 |
25 34
|
mpbird |
|
| 36 |
|
eqid |
|
| 37 |
|
eqid |
|
| 38 |
1 6 36 5 37
|
ply1moncl |
|
| 39 |
27 38
|
sylan |
|
| 40 |
39
|
3ad2ant1 |
|
| 41 |
|
eqid |
|
| 42 |
|
eqid |
|
| 43 |
|
eqid |
|
| 44 |
|
eqid |
|
| 45 |
|
eqid |
|
| 46 |
41 42 43 37 44 45
|
asclmul2 |
|
| 47 |
11 35 40 46
|
syl3anc |
|
| 48 |
|
eqidd |
|
| 49 |
|
oveq12 |
|
| 50 |
49
|
fveq2d |
|
| 51 |
50
|
adantl |
|
| 52 |
|
fvexd |
|
| 53 |
48 51 15 16 52
|
ovmpod |
|
| 54 |
53
|
eqcomd |
|
| 55 |
54
|
oveq2d |
|
| 56 |
47 55
|
eqtr3d |
|
| 57 |
1
|
ply1ring |
|
| 58 |
26 57
|
syl |
|
| 59 |
58
|
3ad2ant2 |
|
| 60 |
59
|
adantr |
|
| 61 |
60
|
3ad2ant1 |
|
| 62 |
|
simpl1 |
|
| 63 |
18 26
|
syl |
|
| 64 |
63
|
3ad2ant1 |
|
| 65 |
|
simp2 |
|
| 66 |
|
simp3 |
|
| 67 |
23
|
3ad2ant1 |
|
| 68 |
12 13 14 65 66 67
|
matecld |
|
| 69 |
1 41 13 37
|
ply1sclcl |
|
| 70 |
64 68 69
|
syl2anc |
|
| 71 |
2 37 3 62 60 70
|
matbas2d |
|
| 72 |
39 71
|
jca |
|
| 73 |
72
|
3ad2ant1 |
|
| 74 |
15 16
|
jca |
|
| 75 |
2 3 37 4 44
|
matvscacell |
|
| 76 |
61 73 74 75
|
syl3anc |
|
| 77 |
27
|
adantr |
|
| 78 |
7 12 14 1 41
|
mat2pmatval |
|
| 79 |
62 77 23 78
|
syl3anc |
|
| 80 |
79
|
eqcomd |
|
| 81 |
80
|
oveq2d |
|
| 82 |
81
|
oveqd |
|
| 83 |
82
|
3ad2ant1 |
|
| 84 |
56 76 83
|
3eqtr2d |
|