Metamath Proof Explorer


Theorem pmatcollpwlem

Description: Lemma for pmatcollpw . (Contributed by AV, 26-Oct-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pmatcollpw.p P = Poly 1 R
pmatcollpw.c C = N Mat P
pmatcollpw.b B = Base C
pmatcollpw.m ˙ = C
pmatcollpw.e × ˙ = mulGrp P
pmatcollpw.x X = var 1 R
pmatcollpw.t T = N matToPolyMat R
Assertion pmatcollpwlem N Fin R CRing M B n 0 a N b N a M decompPMat n b P n × ˙ X = a n × ˙ X ˙ T M decompPMat n b

Proof

Step Hyp Ref Expression
1 pmatcollpw.p P = Poly 1 R
2 pmatcollpw.c C = N Mat P
3 pmatcollpw.b B = Base C
4 pmatcollpw.m ˙ = C
5 pmatcollpw.e × ˙ = mulGrp P
6 pmatcollpw.x X = var 1 R
7 pmatcollpw.t T = N matToPolyMat R
8 1 ply1assa R CRing P AssAlg
9 8 3ad2ant2 N Fin R CRing M B P AssAlg
10 9 adantr N Fin R CRing M B n 0 P AssAlg
11 10 3ad2ant1 N Fin R CRing M B n 0 a N b N P AssAlg
12 eqid N Mat R = N Mat R
13 eqid Base R = Base R
14 eqid Base N Mat R = Base N Mat R
15 simp2 N Fin R CRing M B n 0 a N b N a N
16 simp3 N Fin R CRing M B n 0 a N b N b N
17 simp2 N Fin R CRing M B R CRing
18 17 adantr N Fin R CRing M B n 0 R CRing
19 simp3 N Fin R CRing M B M B
20 19 adantr N Fin R CRing M B n 0 M B
21 simpr N Fin R CRing M B n 0 n 0
22 1 2 3 12 14 decpmatcl R CRing M B n 0 M decompPMat n Base N Mat R
23 18 20 21 22 syl3anc N Fin R CRing M B n 0 M decompPMat n Base N Mat R
24 23 3ad2ant1 N Fin R CRing M B n 0 a N b N M decompPMat n Base N Mat R
25 12 13 14 15 16 24 matecld N Fin R CRing M B n 0 a N b N a M decompPMat n b Base R
26 crngring R CRing R Ring
27 26 3ad2ant2 N Fin R CRing M B R Ring
28 1 ply1sca R Ring R = Scalar P
29 27 28 syl N Fin R CRing M B R = Scalar P
30 29 eqcomd N Fin R CRing M B Scalar P = R
31 30 fveq2d N Fin R CRing M B Base Scalar P = Base R
32 31 eleq2d N Fin R CRing M B a M decompPMat n b Base Scalar P a M decompPMat n b Base R
33 32 adantr N Fin R CRing M B n 0 a M decompPMat n b Base Scalar P a M decompPMat n b Base R
34 33 3ad2ant1 N Fin R CRing M B n 0 a N b N a M decompPMat n b Base Scalar P a M decompPMat n b Base R
35 25 34 mpbird N Fin R CRing M B n 0 a N b N a M decompPMat n b Base Scalar P
36 eqid mulGrp P = mulGrp P
37 eqid Base P = Base P
38 1 6 36 5 37 ply1moncl R Ring n 0 n × ˙ X Base P
39 27 38 sylan N Fin R CRing M B n 0 n × ˙ X Base P
40 39 3ad2ant1 N Fin R CRing M B n 0 a N b N n × ˙ X Base P
41 eqid algSc P = algSc P
42 eqid Scalar P = Scalar P
43 eqid Base Scalar P = Base Scalar P
44 eqid P = P
45 eqid P = P
46 41 42 43 37 44 45 asclmul2 P AssAlg a M decompPMat n b Base Scalar P n × ˙ X Base P n × ˙ X P algSc P a M decompPMat n b = a M decompPMat n b P n × ˙ X
47 11 35 40 46 syl3anc N Fin R CRing M B n 0 a N b N n × ˙ X P algSc P a M decompPMat n b = a M decompPMat n b P n × ˙ X
48 eqidd N Fin R CRing M B n 0 a N b N i N , j N algSc P i M decompPMat n j = i N , j N algSc P i M decompPMat n j
49 oveq12 i = a j = b i M decompPMat n j = a M decompPMat n b
50 49 fveq2d i = a j = b algSc P i M decompPMat n j = algSc P a M decompPMat n b
51 50 adantl N Fin R CRing M B n 0 a N b N i = a j = b algSc P i M decompPMat n j = algSc P a M decompPMat n b
52 fvexd N Fin R CRing M B n 0 a N b N algSc P a M decompPMat n b V
53 48 51 15 16 52 ovmpod N Fin R CRing M B n 0 a N b N a i N , j N algSc P i M decompPMat n j b = algSc P a M decompPMat n b
54 53 eqcomd N Fin R CRing M B n 0 a N b N algSc P a M decompPMat n b = a i N , j N algSc P i M decompPMat n j b
55 54 oveq2d N Fin R CRing M B n 0 a N b N n × ˙ X P algSc P a M decompPMat n b = n × ˙ X P a i N , j N algSc P i M decompPMat n j b
56 47 55 eqtr3d N Fin R CRing M B n 0 a N b N a M decompPMat n b P n × ˙ X = n × ˙ X P a i N , j N algSc P i M decompPMat n j b
57 1 ply1ring R Ring P Ring
58 26 57 syl R CRing P Ring
59 58 3ad2ant2 N Fin R CRing M B P Ring
60 59 adantr N Fin R CRing M B n 0 P Ring
61 60 3ad2ant1 N Fin R CRing M B n 0 a N b N P Ring
62 simpl1 N Fin R CRing M B n 0 N Fin
63 18 26 syl N Fin R CRing M B n 0 R Ring
64 63 3ad2ant1 N Fin R CRing M B n 0 i N j N R Ring
65 simp2 N Fin R CRing M B n 0 i N j N i N
66 simp3 N Fin R CRing M B n 0 i N j N j N
67 23 3ad2ant1 N Fin R CRing M B n 0 i N j N M decompPMat n Base N Mat R
68 12 13 14 65 66 67 matecld N Fin R CRing M B n 0 i N j N i M decompPMat n j Base R
69 1 41 13 37 ply1sclcl R Ring i M decompPMat n j Base R algSc P i M decompPMat n j Base P
70 64 68 69 syl2anc N Fin R CRing M B n 0 i N j N algSc P i M decompPMat n j Base P
71 2 37 3 62 60 70 matbas2d N Fin R CRing M B n 0 i N , j N algSc P i M decompPMat n j B
72 39 71 jca N Fin R CRing M B n 0 n × ˙ X Base P i N , j N algSc P i M decompPMat n j B
73 72 3ad2ant1 N Fin R CRing M B n 0 a N b N n × ˙ X Base P i N , j N algSc P i M decompPMat n j B
74 15 16 jca N Fin R CRing M B n 0 a N b N a N b N
75 2 3 37 4 44 matvscacell P Ring n × ˙ X Base P i N , j N algSc P i M decompPMat n j B a N b N a n × ˙ X ˙ i N , j N algSc P i M decompPMat n j b = n × ˙ X P a i N , j N algSc P i M decompPMat n j b
76 61 73 74 75 syl3anc N Fin R CRing M B n 0 a N b N a n × ˙ X ˙ i N , j N algSc P i M decompPMat n j b = n × ˙ X P a i N , j N algSc P i M decompPMat n j b
77 27 adantr N Fin R CRing M B n 0 R Ring
78 7 12 14 1 41 mat2pmatval N Fin R Ring M decompPMat n Base N Mat R T M decompPMat n = i N , j N algSc P i M decompPMat n j
79 62 77 23 78 syl3anc N Fin R CRing M B n 0 T M decompPMat n = i N , j N algSc P i M decompPMat n j
80 79 eqcomd N Fin R CRing M B n 0 i N , j N algSc P i M decompPMat n j = T M decompPMat n
81 80 oveq2d N Fin R CRing M B n 0 n × ˙ X ˙ i N , j N algSc P i M decompPMat n j = n × ˙ X ˙ T M decompPMat n
82 81 oveqd N Fin R CRing M B n 0 a n × ˙ X ˙ i N , j N algSc P i M decompPMat n j b = a n × ˙ X ˙ T M decompPMat n b
83 82 3ad2ant1 N Fin R CRing M B n 0 a N b N a n × ˙ X ˙ i N , j N algSc P i M decompPMat n j b = a n × ˙ X ˙ T M decompPMat n b
84 56 76 83 3eqtr2d N Fin R CRing M B n 0 a N b N a M decompPMat n b P n × ˙ X = a n × ˙ X ˙ T M decompPMat n b