| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pmatcollpw.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pmatcollpw.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pmatcollpw.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 5 |  | pmatcollpw.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | pmatcollpw.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | pmatcollpw.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 8 | 1 | ply1assa | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  AssAlg ) | 
						
							| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑃  ∈  AssAlg ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑃  ∈  AssAlg ) | 
						
							| 11 | 10 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  𝑃  ∈  AssAlg ) | 
						
							| 12 |  | eqid | ⊢ ( 𝑁  Mat  𝑅 )  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ ( 𝑁  Mat  𝑅 ) )  =  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 15 |  | simp2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  𝑎  ∈  𝑁 ) | 
						
							| 16 |  | simp3 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  𝑏  ∈  𝑁 ) | 
						
							| 17 |  | simp2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  CRing ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  CRing ) | 
						
							| 19 |  | simp3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑀  ∈  𝐵 ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑀  ∈  𝐵 ) | 
						
							| 21 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 22 | 1 2 3 12 14 | decpmatcl | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 23 | 18 20 21 22 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 24 | 23 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 25 | 12 13 14 15 16 24 | matecld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 26 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 27 | 26 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 28 | 1 | ply1sca | ⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 30 | 29 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( Scalar ‘ 𝑃 )  =  𝑅 ) | 
						
							| 31 | 30 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 32 | 31 | eleq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ↔  ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ∈  ( Base ‘ 𝑅 ) ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ↔  ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ∈  ( Base ‘ 𝑅 ) ) ) | 
						
							| 34 | 33 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ↔  ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ∈  ( Base ‘ 𝑅 ) ) ) | 
						
							| 35 | 25 34 | mpbird | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 36 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 37 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 38 | 1 6 36 5 37 | ply1moncl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 39 | 27 38 | sylan | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 40 | 39 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 41 |  | eqid | ⊢ ( algSc ‘ 𝑃 )  =  ( algSc ‘ 𝑃 ) | 
						
							| 42 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 43 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 44 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 45 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 46 | 41 42 43 37 44 45 | asclmul2 | ⊢ ( ( 𝑃  ∈  AssAlg  ∧  ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 𝑛  ↑  𝑋 ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) ) )  =  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) ) | 
						
							| 47 | 11 35 40 46 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( 𝑛  ↑  𝑋 ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) ) )  =  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) ) ) | 
						
							| 48 |  | eqidd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) ) ) | 
						
							| 49 |  | oveq12 | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  =  ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) ) | 
						
							| 50 | 49 | fveq2d | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) )  =  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) ) ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  ∧  ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 ) )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) )  =  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) ) ) | 
						
							| 52 |  | fvexd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) )  ∈  V ) | 
						
							| 53 | 48 51 15 16 52 | ovmpod | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) ) 𝑏 )  =  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) ) ) | 
						
							| 54 | 53 | eqcomd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) ) 𝑏 ) ) | 
						
							| 55 | 54 | oveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( 𝑛  ↑  𝑋 ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) ) )  =  ( ( 𝑛  ↑  𝑋 ) ( .r ‘ 𝑃 ) ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) ) 𝑏 ) ) ) | 
						
							| 56 | 47 55 | eqtr3d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) )  =  ( ( 𝑛  ↑  𝑋 ) ( .r ‘ 𝑃 ) ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) ) 𝑏 ) ) ) | 
						
							| 57 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 58 | 26 57 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  Ring ) | 
						
							| 59 | 58 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑃  ∈  Ring ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑃  ∈  Ring ) | 
						
							| 61 | 60 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  𝑃  ∈  Ring ) | 
						
							| 62 |  | simpl1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑁  ∈  Fin ) | 
						
							| 63 | 18 26 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 64 | 63 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 65 |  | simp2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑁 ) | 
						
							| 66 |  | simp3 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 67 | 23 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 68 | 12 13 14 65 66 67 | matecld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 69 | 1 41 13 37 | ply1sclcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 70 | 64 68 69 | syl2anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 71 | 2 37 3 62 60 70 | matbas2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) )  ∈  𝐵 ) | 
						
							| 72 | 39 71 | jca | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) )  ∈  𝐵 ) ) | 
						
							| 73 | 72 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) )  ∈  𝐵 ) ) | 
						
							| 74 | 15 16 | jca | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) ) | 
						
							| 75 | 2 3 37 4 44 | matvscacell | ⊢ ( ( 𝑃  ∈  Ring  ∧  ( ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) )  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) ) ) 𝑏 )  =  ( ( 𝑛  ↑  𝑋 ) ( .r ‘ 𝑃 ) ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) ) 𝑏 ) ) ) | 
						
							| 76 | 61 73 74 75 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( 𝑎 ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) ) ) 𝑏 )  =  ( ( 𝑛  ↑  𝑋 ) ( .r ‘ 𝑃 ) ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) ) 𝑏 ) ) ) | 
						
							| 77 | 27 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 78 | 7 12 14 1 41 | mat2pmatval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) ) ) | 
						
							| 79 | 62 77 23 78 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) ) ) | 
						
							| 80 | 79 | eqcomd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) )  =  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) | 
						
							| 81 | 80 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) ) )  =  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) | 
						
							| 82 | 81 | oveqd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑎 ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) ) ) 𝑏 )  =  ( 𝑎 ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) 𝑏 ) ) | 
						
							| 83 | 82 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( 𝑎 ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 ) ) ) ) 𝑏 )  =  ( 𝑎 ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) 𝑏 ) ) | 
						
							| 84 | 56 76 83 | 3eqtr2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛  ↑  𝑋 ) )  =  ( 𝑎 ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) 𝑏 ) ) |