Description: Write a polynomial matrix as a sum of matrices whose entries are products of variable powers and constant polynomials collecting like powers. (Contributed by AV, 3-Oct-2019) (Revised by AV, 3-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmatcollpw1.p | |
|
pmatcollpw1.c | |
||
pmatcollpw1.b | |
||
pmatcollpw1.m | |
||
pmatcollpw1.e | |
||
pmatcollpw1.x | |
||
Assertion | pmatcollpw2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmatcollpw1.p | |
|
2 | pmatcollpw1.c | |
|
3 | pmatcollpw1.b | |
|
4 | pmatcollpw1.m | |
|
5 | pmatcollpw1.e | |
|
6 | pmatcollpw1.x | |
|
7 | 1 2 3 4 5 6 | pmatcollpw1 | |
8 | eqid | |
|
9 | simp1 | |
|
10 | nn0ex | |
|
11 | 10 | a1i | |
12 | 1 | ply1ring | |
13 | 12 | 3ad2ant2 | |
14 | eqid | |
|
15 | 9 | adantr | |
16 | 13 | adantr | |
17 | simp1l2 | |
|
18 | eqid | |
|
19 | eqid | |
|
20 | eqid | |
|
21 | simp2 | |
|
22 | simp3 | |
|
23 | simp2 | |
|
24 | 23 | adantr | |
25 | simp3 | |
|
26 | 25 | adantr | |
27 | simpr | |
|
28 | 24 26 27 | 3jca | |
29 | 28 | 3ad2ant1 | |
30 | 1 2 3 18 20 | decpmatcl | |
31 | 29 30 | syl | |
32 | 18 19 20 21 22 31 | matecld | |
33 | simp1r | |
|
34 | eqid | |
|
35 | 19 1 6 4 34 5 14 | ply1tmcl | |
36 | 17 32 33 35 | syl3anc | |
37 | 2 14 3 15 16 36 | matbas2d | |
38 | 1 2 3 4 5 6 | pmatcollpw2lem | |
39 | 2 3 8 9 11 13 37 38 | matgsum | |
40 | 7 39 | eqtr4d | |