Metamath Proof Explorer


Theorem pmatcollpw2

Description: Write a polynomial matrix as a sum of matrices whose entries are products of variable powers and constant polynomials collecting like powers. (Contributed by AV, 3-Oct-2019) (Revised by AV, 3-Dec-2019)

Ref Expression
Hypotheses pmatcollpw1.p P=Poly1R
pmatcollpw1.c C=NMatP
pmatcollpw1.b B=BaseC
pmatcollpw1.m ×˙=P
pmatcollpw1.e ×˙=mulGrpP
pmatcollpw1.x X=var1R
Assertion pmatcollpw2 NFinRRingMBM=Cn0iN,jNiMdecompPMatnj×˙n×˙X

Proof

Step Hyp Ref Expression
1 pmatcollpw1.p P=Poly1R
2 pmatcollpw1.c C=NMatP
3 pmatcollpw1.b B=BaseC
4 pmatcollpw1.m ×˙=P
5 pmatcollpw1.e ×˙=mulGrpP
6 pmatcollpw1.x X=var1R
7 1 2 3 4 5 6 pmatcollpw1 NFinRRingMBM=iN,jNPn0iMdecompPMatnj×˙n×˙X
8 eqid 0C=0C
9 simp1 NFinRRingMBNFin
10 nn0ex 0V
11 10 a1i NFinRRingMB0V
12 1 ply1ring RRingPRing
13 12 3ad2ant2 NFinRRingMBPRing
14 eqid BaseP=BaseP
15 9 adantr NFinRRingMBn0NFin
16 13 adantr NFinRRingMBn0PRing
17 simp1l2 NFinRRingMBn0iNjNRRing
18 eqid NMatR=NMatR
19 eqid BaseR=BaseR
20 eqid BaseNMatR=BaseNMatR
21 simp2 NFinRRingMBn0iNjNiN
22 simp3 NFinRRingMBn0iNjNjN
23 simp2 NFinRRingMBRRing
24 23 adantr NFinRRingMBn0RRing
25 simp3 NFinRRingMBMB
26 25 adantr NFinRRingMBn0MB
27 simpr NFinRRingMBn0n0
28 24 26 27 3jca NFinRRingMBn0RRingMBn0
29 28 3ad2ant1 NFinRRingMBn0iNjNRRingMBn0
30 1 2 3 18 20 decpmatcl RRingMBn0MdecompPMatnBaseNMatR
31 29 30 syl NFinRRingMBn0iNjNMdecompPMatnBaseNMatR
32 18 19 20 21 22 31 matecld NFinRRingMBn0iNjNiMdecompPMatnjBaseR
33 simp1r NFinRRingMBn0iNjNn0
34 eqid mulGrpP=mulGrpP
35 19 1 6 4 34 5 14 ply1tmcl RRingiMdecompPMatnjBaseRn0iMdecompPMatnj×˙n×˙XBaseP
36 17 32 33 35 syl3anc NFinRRingMBn0iNjNiMdecompPMatnj×˙n×˙XBaseP
37 2 14 3 15 16 36 matbas2d NFinRRingMBn0iN,jNiMdecompPMatnj×˙n×˙XB
38 1 2 3 4 5 6 pmatcollpw2lem NFinRRingMBfinSupp0Cn0iN,jNiMdecompPMatnj×˙n×˙X
39 2 3 8 9 11 13 37 38 matgsum NFinRRingMBCn0iN,jNiMdecompPMatnj×˙n×˙X=iN,jNPn0iMdecompPMatnj×˙n×˙X
40 7 39 eqtr4d NFinRRingMBM=Cn0iN,jNiMdecompPMatnj×˙n×˙X