| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw1.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pmatcollpw1.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pmatcollpw1.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pmatcollpw1.m | ⊢  ×   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 5 |  | pmatcollpw1.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | pmatcollpw1.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 | 1 2 3 4 5 6 | pmatcollpw1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑀  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 8 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 9 |  | simp1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑁  ∈  Fin ) | 
						
							| 10 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ℕ0  ∈  V ) | 
						
							| 12 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑃  ∈  Ring ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 15 | 9 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑁  ∈  Fin ) | 
						
							| 16 | 13 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑃  ∈  Ring ) | 
						
							| 17 |  | simp1l2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 18 |  | eqid | ⊢ ( 𝑁  Mat  𝑅 )  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ ( 𝑁  Mat  𝑅 ) )  =  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 21 |  | simp2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑁 ) | 
						
							| 22 |  | simp3 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 23 |  | simp2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 25 |  | simp3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑀  ∈  𝐵 ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑀  ∈  𝐵 ) | 
						
							| 27 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 28 | 24 26 27 | 3jca | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝑛  ∈  ℕ0 ) ) | 
						
							| 29 | 28 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝑛  ∈  ℕ0 ) ) | 
						
							| 30 | 1 2 3 18 20 | decpmatcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 32 | 18 19 20 21 22 31 | matecld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 33 |  | simp1r | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 34 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 35 | 19 1 6 4 34 5 14 | ply1tmcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ∈  ( Base ‘ 𝑅 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 36 | 17 32 33 35 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 37 | 2 14 3 15 16 36 | matbas2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) )  ∈  𝐵 ) | 
						
							| 38 | 1 2 3 4 5 6 | pmatcollpw2lem | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  finSupp  ( 0g ‘ 𝐶 ) ) | 
						
							| 39 | 2 3 8 9 11 13 37 38 | matgsum | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 40 | 7 39 | eqtr4d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) ) |