| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmatcollpw1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
pmatcollpw1.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
pmatcollpw1.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
pmatcollpw1.m |
⊢ × = ( ·𝑠 ‘ 𝑃 ) |
| 5 |
|
pmatcollpw1.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 6 |
|
pmatcollpw1.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 7 |
1 2 3 4 5 6
|
pmatcollpw1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑀 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ) ) |
| 8 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
| 9 |
|
simp1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
| 10 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 11 |
10
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ℕ0 ∈ V ) |
| 12 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 13 |
12
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑃 ∈ Ring ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 15 |
9
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑁 ∈ Fin ) |
| 16 |
13
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑃 ∈ Ring ) |
| 17 |
|
simp1l2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 18 |
|
eqid |
⊢ ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 ) |
| 19 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 20 |
|
eqid |
⊢ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
| 21 |
|
simp2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
| 22 |
|
simp3 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
| 23 |
|
simp2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 24 |
23
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 25 |
|
simp3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ 𝐵 ) |
| 26 |
25
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑀 ∈ 𝐵 ) |
| 27 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
| 28 |
24 26 27
|
3jca |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) ) |
| 29 |
28
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) ) |
| 30 |
1 2 3 18 20
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝑛 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 31 |
29 30
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑀 decompPMat 𝑛 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 32 |
18 19 20 21 22 31
|
matecld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 33 |
|
simp1r |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑛 ∈ ℕ0 ) |
| 34 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 35 |
19 1 6 4 34 5 14
|
ply1tmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 36 |
17 32 33 35
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 37 |
2 14 3 15 16 36
|
matbas2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ∈ 𝐵 ) |
| 38 |
1 2 3 4 5 6
|
pmatcollpw2lem |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) finSupp ( 0g ‘ 𝐶 ) ) |
| 39 |
2 3 8 9 11 13 37 38
|
matgsum |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ) ) |
| 40 |
7 39
|
eqtr4d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ) ) |