| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw1.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pmatcollpw1.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pmatcollpw1.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pmatcollpw1.m | ⊢  ×   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 5 |  | pmatcollpw1.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | pmatcollpw1.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | simp1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑁  ∈  Fin ) | 
						
							| 8 |  | mpoexga | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) )  ∈  V ) | 
						
							| 9 | 7 7 8 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) )  ∈  V ) | 
						
							| 10 | 9 | ralrimivw | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) )  ∈  V ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) | 
						
							| 12 | 11 | fnmpt | ⊢ ( ∀ 𝑛  ∈  ℕ0 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) )  ∈  V  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  Fn  ℕ0 ) | 
						
							| 13 | 10 12 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  Fn  ℕ0 ) | 
						
							| 14 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 15 | 14 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ℕ0  ∈  V ) | 
						
							| 16 |  | fvexd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 0g ‘ 𝐶 )  ∈  V ) | 
						
							| 17 |  | suppvalfn | ⊢ ( ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  Fn  ℕ0  ∧  ℕ0  ∈  V  ∧  ( 0g ‘ 𝐶 )  ∈  V )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  supp  ( 0g ‘ 𝐶 ) )  =  { 𝑥  ∈  ℕ0  ∣  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 ) } ) | 
						
							| 18 | 13 15 16 17 | syl3anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  supp  ( 0g ‘ 𝐶 ) )  =  { 𝑥  ∈  ℕ0  ∣  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 ) } ) | 
						
							| 19 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 20 | 1 2 3 19 | pmatcoe1fsupp | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 21 |  | oveq1 | ⊢ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( ( 0g ‘ 𝑅 )  ×  ( 𝑥  ↑  𝑋 ) ) ) | 
						
							| 22 | 4 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →   ×   =  (  ·𝑠  ‘ 𝑃 ) ) | 
						
							| 23 | 1 | ply1sca | ⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 24 | 23 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 26 |  | eqidd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑥  ↑  𝑋 )  =  ( 𝑥  ↑  𝑋 ) ) | 
						
							| 27 | 22 25 26 | oveq123d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( 0g ‘ 𝑅 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 𝑥  ↑  𝑋 ) ) ) | 
						
							| 28 | 27 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( ( 0g ‘ 𝑅 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 𝑥  ↑  𝑋 ) ) ) | 
						
							| 29 | 24 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( Scalar ‘ 𝑃 )  =  𝑅 ) | 
						
							| 30 | 29 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( Scalar ‘ 𝑃 )  =  𝑅 ) | 
						
							| 31 | 30 | fveq2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( 0g ‘ ( Scalar ‘ 𝑃 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 𝑥  ↑  𝑋 ) )  =  ( ( 0g ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑥  ↑  𝑋 ) ) ) | 
						
							| 33 |  | simpl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 34 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 35 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 36 | 1 6 34 5 35 | ply1moncl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑥  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 37 | 36 | 3ad2antl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑥  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 38 | 33 37 | jca | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑅  ∈  Ring  ∧  ( 𝑥  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  →  ( 𝑅  ∈  Ring  ∧  ( 𝑥  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑅  ∈  Ring  ∧  ( 𝑥  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 41 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 42 | 1 35 41 19 | ply10s0 | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 0g ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 43 | 40 42 | syl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( ( 0g ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 44 | 28 32 43 | 3eqtrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( ( 0g ‘ 𝑅 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 45 | 21 44 | sylan9eqr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 46 | 45 | ex | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 47 | 46 | anasss | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 48 | 47 | ralimdvva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 49 | 48 | imim2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) )  →  ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 50 | 49 | ralimdva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) )  →  ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 51 | 50 | reximdv | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 52 | 20 51 | mpd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 53 |  | simpl3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  𝑀  ∈  𝐵 ) | 
						
							| 54 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  𝑥  ∈  ℕ0 ) | 
						
							| 55 | 33 53 54 | 3jca | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝑥  ∈  ℕ0 ) ) | 
						
							| 56 | 1 2 3 | decpmate | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) ) | 
						
							| 57 | 55 56 | sylan | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) ) | 
						
							| 58 | 57 | oveq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) ) ) | 
						
							| 59 | 58 | eqeq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 )  ↔  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 60 | 59 | 2ralbidva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 )  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 61 | 60 | imbi2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) )  ↔  ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 62 | 61 | ralbidva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) )  ↔  ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 63 | 62 | rexbidv | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) )  ↔  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 64 | 52 63 | mpbird | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 65 |  | eqid | ⊢ 𝑁  =  𝑁 | 
						
							| 66 | 65 | biantrur | ⊢ ( ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) )  ↔  ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 67 | 65 | biantrur | ⊢ ( ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 )  ↔  ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 68 | 67 | bicomi | ⊢ ( ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) )  ↔  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 69 | 68 | ralbii | ⊢ ( ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) )  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 70 | 66 69 | bitr3i | ⊢ ( ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) )  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 71 | 70 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) )  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 72 | 71 | imbi2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑦  <  𝑥  →  ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  ↔  ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 73 | 72 | rexralbidv | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  ↔  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 74 | 64 73 | mpbird | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) ) ) | 
						
							| 75 |  | mpoeq123 | ⊢ ( ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 76 | 75 | imim2i | ⊢ ( ( 𝑦  <  𝑥  →  ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  →  ( 𝑦  <  𝑥  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 77 | 76 | ralimi | ⊢ ( ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  →  ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 78 | 77 | reximi | ⊢ ( ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 79 | 74 78 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 80 |  | eqidd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) | 
						
							| 81 |  | oveq2 | ⊢ ( 𝑛  =  𝑥  →  ( 𝑀  decompPMat  𝑛 )  =  ( 𝑀  decompPMat  𝑥 ) ) | 
						
							| 82 | 81 | oveqd | ⊢ ( 𝑛  =  𝑥  →  ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  =  ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 ) ) | 
						
							| 83 |  | oveq1 | ⊢ ( 𝑛  =  𝑥  →  ( 𝑛  ↑  𝑋 )  =  ( 𝑥  ↑  𝑋 ) ) | 
						
							| 84 | 82 83 | oveq12d | ⊢ ( 𝑛  =  𝑥  →  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) )  =  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) ) | 
						
							| 85 | 84 | mpoeq3dv | ⊢ ( 𝑛  =  𝑥  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) ) ) | 
						
							| 86 | 85 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑛  =  𝑥 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) ) ) | 
						
							| 87 |  | id | ⊢ ( 𝑁  ∈  Fin  →  𝑁  ∈  Fin ) | 
						
							| 88 | 87 | ancri | ⊢ ( 𝑁  ∈  Fin  →  ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin ) ) | 
						
							| 89 | 88 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin ) ) | 
						
							| 90 | 89 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin ) ) | 
						
							| 91 |  | mpoexga | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  ∈  V ) | 
						
							| 92 | 90 91 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  ∈  V ) | 
						
							| 93 | 80 86 54 92 | fvmptd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) ) ) | 
						
							| 94 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 95 | 94 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring ) ) | 
						
							| 96 | 95 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring ) ) | 
						
							| 97 | 96 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring ) ) | 
						
							| 98 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 99 | 2 98 | mat0op | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring )  →  ( 0g ‘ 𝐶 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 100 | 97 99 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( 0g ‘ 𝐶 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 101 | 93 100 | eqeq12d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝐶 )  ↔  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 102 | 101 | imbi2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑦  <  𝑥  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝐶 ) )  ↔  ( 𝑦  <  𝑥  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) ) ) ) | 
						
							| 103 | 102 | ralbidva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝐶 ) )  ↔  ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) ) ) ) | 
						
							| 104 | 103 | rexbidv | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝐶 ) )  ↔  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) ) ) ) | 
						
							| 105 | 79 104 | mpbird | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝐶 ) ) ) | 
						
							| 106 |  | nne | ⊢ ( ¬  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 )  ↔  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 107 | 106 | imbi2i | ⊢ ( ( 𝑦  <  𝑥  →  ¬  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 ) )  ↔  ( 𝑦  <  𝑥  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝐶 ) ) ) | 
						
							| 108 | 107 | ralbii | ⊢ ( ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ¬  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 ) )  ↔  ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝐶 ) ) ) | 
						
							| 109 | 108 | rexbii | ⊢ ( ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ¬  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 ) )  ↔  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝐶 ) ) ) | 
						
							| 110 | 105 109 | sylibr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ¬  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 ) ) ) | 
						
							| 111 |  | rabssnn0fi | ⊢ ( { 𝑥  ∈  ℕ0  ∣  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 ) }  ∈  Fin  ↔  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ¬  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 ) ) ) | 
						
							| 112 | 110 111 | sylibr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  { 𝑥  ∈  ℕ0  ∣  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 ) }  ∈  Fin ) | 
						
							| 113 | 18 112 | eqeltrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  supp  ( 0g ‘ 𝐶 ) )  ∈  Fin ) | 
						
							| 114 |  | funmpt | ⊢ Fun  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) | 
						
							| 115 | 14 | mptex | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  ∈  V | 
						
							| 116 |  | funisfsupp | ⊢ ( ( Fun  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  ∧  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  ∈  V  ∧  ( 0g ‘ 𝐶 )  ∈  V )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  finSupp  ( 0g ‘ 𝐶 )  ↔  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  supp  ( 0g ‘ 𝐶 ) )  ∈  Fin ) ) | 
						
							| 117 | 114 115 16 116 | mp3an12i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  finSupp  ( 0g ‘ 𝐶 )  ↔  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  supp  ( 0g ‘ 𝐶 ) )  ∈  Fin ) ) | 
						
							| 118 | 113 117 | mpbird | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  finSupp  ( 0g ‘ 𝐶 ) ) |