| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmatcollpw1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
pmatcollpw1.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
pmatcollpw1.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
pmatcollpw1.m |
⊢ × = ( ·𝑠 ‘ 𝑃 ) |
| 5 |
|
pmatcollpw1.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 6 |
|
pmatcollpw1.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 7 |
|
simp1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
| 8 |
|
mpoexga |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ∈ V ) |
| 9 |
7 7 8
|
syl2anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ∈ V ) |
| 10 |
9
|
ralrimivw |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ∀ 𝑛 ∈ ℕ0 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ∈ V ) |
| 11 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) |
| 12 |
11
|
fnmpt |
⊢ ( ∀ 𝑛 ∈ ℕ0 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ∈ V → ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) Fn ℕ0 ) |
| 13 |
10 12
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) Fn ℕ0 ) |
| 14 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 15 |
14
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ℕ0 ∈ V ) |
| 16 |
|
fvexd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 0g ‘ 𝐶 ) ∈ V ) |
| 17 |
|
suppvalfn |
⊢ ( ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) Fn ℕ0 ∧ ℕ0 ∈ V ∧ ( 0g ‘ 𝐶 ) ∈ V ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) supp ( 0g ‘ 𝐶 ) ) = { 𝑥 ∈ ℕ0 ∣ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝐶 ) } ) |
| 18 |
13 15 16 17
|
syl3anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) supp ( 0g ‘ 𝐶 ) ) = { 𝑥 ∈ ℕ0 ∣ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝐶 ) } ) |
| 19 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 20 |
1 2 3 19
|
pmatcoe1fsupp |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) |
| 21 |
|
oveq1 |
⊢ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) → ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) × ( 𝑥 ↑ 𝑋 ) ) = ( ( 0g ‘ 𝑅 ) × ( 𝑥 ↑ 𝑋 ) ) ) |
| 22 |
4
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → × = ( ·𝑠 ‘ 𝑃 ) ) |
| 23 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 24 |
23
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 25 |
24
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 26 |
|
eqidd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑥 ↑ 𝑋 ) = ( 𝑥 ↑ 𝑋 ) ) |
| 27 |
22 25 26
|
oveq123d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) × ( 𝑥 ↑ 𝑋 ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑥 ↑ 𝑋 ) ) ) |
| 28 |
27
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 0g ‘ 𝑅 ) × ( 𝑥 ↑ 𝑋 ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑥 ↑ 𝑋 ) ) ) |
| 29 |
24
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
| 30 |
29
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
| 31 |
30
|
fveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ 𝑅 ) ) |
| 32 |
31
|
oveq1d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑥 ↑ 𝑋 ) ) = ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑥 ↑ 𝑋 ) ) ) |
| 33 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 34 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 35 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 36 |
1 6 34 5 35
|
ply1moncl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 37 |
36
|
3ad2antl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 38 |
33 37
|
jca |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑅 ∈ Ring ∧ ( 𝑥 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) ) |
| 39 |
38
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝑅 ∈ Ring ∧ ( 𝑥 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) ) |
| 40 |
39
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑅 ∈ Ring ∧ ( 𝑥 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) ) |
| 41 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 42 |
1 35 41 19
|
ply10s0 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 43 |
40 42
|
syl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 44 |
28 32 43
|
3eqtrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 0g ‘ 𝑅 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 45 |
21 44
|
sylan9eqr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) → ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 46 |
45
|
ex |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) → ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 47 |
46
|
anasss |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) → ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 48 |
47
|
ralimdvva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 49 |
48
|
imim2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑦 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑦 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 50 |
49
|
ralimdva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) → ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 51 |
50
|
reximdv |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 52 |
20 51
|
mpd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 53 |
|
simpl3 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → 𝑀 ∈ 𝐵 ) |
| 54 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → 𝑥 ∈ ℕ0 ) |
| 55 |
33 53 54
|
3jca |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑥 ∈ ℕ0 ) ) |
| 56 |
1 2 3
|
decpmate |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) = ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) ) |
| 57 |
55 56
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) = ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) ) |
| 58 |
57
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) × ( 𝑥 ↑ 𝑋 ) ) ) |
| 59 |
58
|
eqeq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ↔ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 60 |
59
|
2ralbidva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 61 |
60
|
imbi2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑦 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ↔ ( 𝑦 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 62 |
61
|
ralbidva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ↔ ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 63 |
62
|
rexbidv |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ↔ ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 64 |
52 63
|
mpbird |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 65 |
|
eqid |
⊢ 𝑁 = 𝑁 |
| 66 |
65
|
biantrur |
⊢ ( ∀ 𝑖 ∈ 𝑁 ( 𝑁 = 𝑁 ∧ ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ↔ ( 𝑁 = 𝑁 ∧ ∀ 𝑖 ∈ 𝑁 ( 𝑁 = 𝑁 ∧ ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 67 |
65
|
biantrur |
⊢ ( ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ↔ ( 𝑁 = 𝑁 ∧ ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 68 |
67
|
bicomi |
⊢ ( ( 𝑁 = 𝑁 ∧ ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ↔ ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 69 |
68
|
ralbii |
⊢ ( ∀ 𝑖 ∈ 𝑁 ( 𝑁 = 𝑁 ∧ ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 70 |
66 69
|
bitr3i |
⊢ ( ( 𝑁 = 𝑁 ∧ ∀ 𝑖 ∈ 𝑁 ( 𝑁 = 𝑁 ∧ ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 71 |
70
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑁 = 𝑁 ∧ ∀ 𝑖 ∈ 𝑁 ( 𝑁 = 𝑁 ∧ ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 72 |
71
|
imbi2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑦 < 𝑥 → ( 𝑁 = 𝑁 ∧ ∀ 𝑖 ∈ 𝑁 ( 𝑁 = 𝑁 ∧ ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) ↔ ( 𝑦 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 73 |
72
|
rexralbidv |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( 𝑁 = 𝑁 ∧ ∀ 𝑖 ∈ 𝑁 ( 𝑁 = 𝑁 ∧ ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) ↔ ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 74 |
64 73
|
mpbird |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( 𝑁 = 𝑁 ∧ ∀ 𝑖 ∈ 𝑁 ( 𝑁 = 𝑁 ∧ ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) ) |
| 75 |
|
mpoeq123 |
⊢ ( ( 𝑁 = 𝑁 ∧ ∀ 𝑖 ∈ 𝑁 ( 𝑁 = 𝑁 ∧ ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑃 ) ) ) |
| 76 |
75
|
imim2i |
⊢ ( ( 𝑦 < 𝑥 → ( 𝑁 = 𝑁 ∧ ∀ 𝑖 ∈ 𝑁 ( 𝑁 = 𝑁 ∧ ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) → ( 𝑦 < 𝑥 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑃 ) ) ) ) |
| 77 |
76
|
ralimi |
⊢ ( ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( 𝑁 = 𝑁 ∧ ∀ 𝑖 ∈ 𝑁 ( 𝑁 = 𝑁 ∧ ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) → ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑃 ) ) ) ) |
| 78 |
77
|
reximi |
⊢ ( ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( 𝑁 = 𝑁 ∧ ∀ 𝑖 ∈ 𝑁 ( 𝑁 = 𝑁 ∧ ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑃 ) ) ) ) |
| 79 |
74 78
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑃 ) ) ) ) |
| 80 |
|
eqidd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ) |
| 81 |
|
oveq2 |
⊢ ( 𝑛 = 𝑥 → ( 𝑀 decompPMat 𝑛 ) = ( 𝑀 decompPMat 𝑥 ) ) |
| 82 |
81
|
oveqd |
⊢ ( 𝑛 = 𝑥 → ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) = ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) ) |
| 83 |
|
oveq1 |
⊢ ( 𝑛 = 𝑥 → ( 𝑛 ↑ 𝑋 ) = ( 𝑥 ↑ 𝑋 ) ) |
| 84 |
82 83
|
oveq12d |
⊢ ( 𝑛 = 𝑥 → ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) = ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) ) |
| 85 |
84
|
mpoeq3dv |
⊢ ( 𝑛 = 𝑥 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) ) ) |
| 86 |
85
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑛 = 𝑥 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) ) ) |
| 87 |
|
id |
⊢ ( 𝑁 ∈ Fin → 𝑁 ∈ Fin ) |
| 88 |
87
|
ancri |
⊢ ( 𝑁 ∈ Fin → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
| 89 |
88
|
3ad2ant1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
| 90 |
89
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
| 91 |
|
mpoexga |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) ) ∈ V ) |
| 92 |
90 91
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) ) ∈ V ) |
| 93 |
80 86 54 92
|
fvmptd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) ) ) |
| 94 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 95 |
94
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) ) |
| 96 |
95
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) ) |
| 97 |
96
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) ) |
| 98 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 99 |
2 98
|
mat0op |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → ( 0g ‘ 𝐶 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑃 ) ) ) |
| 100 |
97 99
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( 0g ‘ 𝐶 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑃 ) ) ) |
| 101 |
93 100
|
eqeq12d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) = ( 0g ‘ 𝐶 ) ↔ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑃 ) ) ) ) |
| 102 |
101
|
imbi2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑦 < 𝑥 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) = ( 0g ‘ 𝐶 ) ) ↔ ( 𝑦 < 𝑥 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑃 ) ) ) ) ) |
| 103 |
102
|
ralbidva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) = ( 0g ‘ 𝐶 ) ) ↔ ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑃 ) ) ) ) ) |
| 104 |
103
|
rexbidv |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) = ( 0g ‘ 𝐶 ) ) ↔ ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑥 ) 𝑗 ) × ( 𝑥 ↑ 𝑋 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑃 ) ) ) ) ) |
| 105 |
79 104
|
mpbird |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) = ( 0g ‘ 𝐶 ) ) ) |
| 106 |
|
nne |
⊢ ( ¬ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝐶 ) ↔ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) = ( 0g ‘ 𝐶 ) ) |
| 107 |
106
|
imbi2i |
⊢ ( ( 𝑦 < 𝑥 → ¬ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝐶 ) ) ↔ ( 𝑦 < 𝑥 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) = ( 0g ‘ 𝐶 ) ) ) |
| 108 |
107
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ¬ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝐶 ) ) ↔ ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) = ( 0g ‘ 𝐶 ) ) ) |
| 109 |
108
|
rexbii |
⊢ ( ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ¬ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝐶 ) ) ↔ ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) = ( 0g ‘ 𝐶 ) ) ) |
| 110 |
105 109
|
sylibr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ¬ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝐶 ) ) ) |
| 111 |
|
rabssnn0fi |
⊢ ( { 𝑥 ∈ ℕ0 ∣ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝐶 ) } ∈ Fin ↔ ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ¬ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝐶 ) ) ) |
| 112 |
110 111
|
sylibr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → { 𝑥 ∈ ℕ0 ∣ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ‘ 𝑥 ) ≠ ( 0g ‘ 𝐶 ) } ∈ Fin ) |
| 113 |
18 112
|
eqeltrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) supp ( 0g ‘ 𝐶 ) ) ∈ Fin ) |
| 114 |
|
funmpt |
⊢ Fun ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) |
| 115 |
14
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ∈ V |
| 116 |
|
funisfsupp |
⊢ ( ( Fun ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ∧ ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ∈ V ∧ ( 0g ‘ 𝐶 ) ∈ V ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) finSupp ( 0g ‘ 𝐶 ) ↔ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) supp ( 0g ‘ 𝐶 ) ) ∈ Fin ) ) |
| 117 |
114 115 16 116
|
mp3an12i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) finSupp ( 0g ‘ 𝐶 ) ↔ ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) supp ( 0g ‘ 𝐶 ) ) ∈ Fin ) ) |
| 118 |
113 117
|
mpbird |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) finSupp ( 0g ‘ 𝐶 ) ) |