| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw1.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pmatcollpw1.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pmatcollpw1.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pmatcollpw1.m | ⊢  ×   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 5 |  | pmatcollpw1.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | pmatcollpw1.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 | 1 2 3 4 5 6 | pmatcollpw1lem2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 𝑀 𝑏 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) | 
						
							| 8 |  | eqidd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 9 |  | oveq12 | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  =  ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) )  =  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) ) | 
						
							| 11 | 10 | mpteq2dv | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 ) )  →  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) | 
						
							| 14 |  | simprl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑎  ∈  𝑁 ) | 
						
							| 15 |  | simprr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑏  ∈  𝑁 ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 17 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 18 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 19 |  | ringcmn | ⊢ ( 𝑃  ∈  Ring  →  𝑃  ∈  CMnd ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  CMnd ) | 
						
							| 21 | 20 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑃  ∈  CMnd ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑃  ∈  CMnd ) | 
						
							| 23 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 24 | 23 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ℕ0  ∈  V ) | 
						
							| 25 |  | simpl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑅  ∈  Ring ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 27 |  | eqid | ⊢ ( 𝑁  Mat  𝑅 )  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 28 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 29 |  | eqid | ⊢ ( Base ‘ ( 𝑁  Mat  𝑅 ) )  =  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 30 |  | simplrl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑎  ∈  𝑁 ) | 
						
							| 31 | 15 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑏  ∈  𝑁 ) | 
						
							| 32 |  | simpl3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑀  ∈  𝐵 ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑀  ∈  𝐵 ) | 
						
							| 34 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 35 | 1 2 3 27 29 | decpmatcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 36 | 26 33 34 35 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 37 | 27 28 29 30 31 36 | matecld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 38 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 39 | 28 1 6 4 38 5 16 | ply1tmcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ∈  ( Base ‘ 𝑅 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 40 | 26 37 34 39 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 41 | 40 | fmpttd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑃 ) ) | 
						
							| 42 | 1 2 3 4 5 6 | pmatcollpw1lem1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 43 | 42 | 3expb | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 44 | 16 17 22 24 41 43 | gsumcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 45 | 8 13 14 15 44 | ovmpod | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) 𝑏 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) | 
						
							| 46 | 7 45 | eqtr4d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 𝑀 𝑏 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) 𝑏 ) ) | 
						
							| 47 | 46 | ralrimivva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 𝑀 𝑏 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) 𝑏 ) ) | 
						
							| 48 |  | simp3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑀  ∈  𝐵 ) | 
						
							| 49 |  | simp1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑁  ∈  Fin ) | 
						
							| 50 | 18 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑃  ∈  Ring ) | 
						
							| 51 | 21 | 3ad2ant1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑃  ∈  CMnd ) | 
						
							| 52 | 23 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ℕ0  ∈  V ) | 
						
							| 53 |  | simpl12 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 54 |  | simpl2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑛  ∈  ℕ0 )  →  𝑖  ∈  𝑁 ) | 
						
							| 55 |  | simpl3 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑛  ∈  ℕ0 )  →  𝑗  ∈  𝑁 ) | 
						
							| 56 | 48 | 3ad2ant1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑀  ∈  𝐵 ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑛  ∈  ℕ0 )  →  𝑀  ∈  𝐵 ) | 
						
							| 58 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 59 | 53 57 58 35 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 60 | 27 28 29 54 55 59 | matecld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 61 | 28 1 6 4 38 5 16 | ply1tmcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ∈  ( Base ‘ 𝑅 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 62 | 53 60 58 61 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 63 | 62 | fmpttd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑃 ) ) | 
						
							| 64 | 1 2 3 4 5 6 | pmatcollpw1lem1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 65 | 16 17 51 52 63 64 | gsumcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 66 | 2 16 3 49 50 65 | matbas2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) )  ∈  𝐵 ) | 
						
							| 67 | 2 3 | eqmat | ⊢ ( ( 𝑀  ∈  𝐵  ∧  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) )  ∈  𝐵 )  →  ( 𝑀  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) )  ↔  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 𝑀 𝑏 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) 𝑏 ) ) ) | 
						
							| 68 | 48 66 67 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑀  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) )  ↔  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 𝑀 𝑏 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) 𝑏 ) ) ) | 
						
							| 69 | 47 68 | mpbird | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑀  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) ) |