| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw1.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pmatcollpw1.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pmatcollpw1.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pmatcollpw1.m | ⊢  ×   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 5 |  | pmatcollpw1.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | pmatcollpw1.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | simpl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑅  ∈  Ring ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 9 |  | simprl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑎  ∈  𝑁 ) | 
						
							| 10 |  | simprr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑏  ∈  𝑁 ) | 
						
							| 11 |  | simpl3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑀  ∈  𝐵 ) | 
						
							| 12 | 2 8 3 9 10 11 | matecld | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 𝑀 𝑏 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 13 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 14 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 15 |  | eqid | ⊢ ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) )  =  ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) | 
						
							| 16 | 1 6 8 4 13 14 15 | ply1coe | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑎 𝑀 𝑏 )  ∈  ( Base ‘ 𝑃 ) )  →  ( 𝑎 𝑀 𝑏 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝑛 )  ×  ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ) ) | 
						
							| 17 | 7 12 16 | syl2anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 𝑀 𝑏 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝑛 )  ×  ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ) ) | 
						
							| 18 | 7 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 19 | 11 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑀  ∈  𝐵 ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 21 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) ) | 
						
							| 23 | 1 2 3 | decpmate | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  =  ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝑛 ) ) | 
						
							| 24 | 18 19 20 22 23 | syl31anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  =  ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝑛 ) ) | 
						
							| 25 | 24 | eqcomd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝑛 )  =  ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) ) | 
						
							| 26 | 5 | eqcomi | ⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) )  =   ↑ | 
						
							| 27 | 26 | oveqi | ⊢ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 )  =  ( 𝑛  ↑  𝑋 ) | 
						
							| 28 | 27 | a1i | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 )  =  ( 𝑛  ↑  𝑋 ) ) | 
						
							| 29 | 25 28 | oveq12d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝑛 )  ×  ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) )  =  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) ) | 
						
							| 30 | 29 | mpteq2dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝑛 )  ×  ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝑛 )  ×  ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) | 
						
							| 32 | 17 31 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 𝑀 𝑏 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) |