| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw1.p |  | 
						
							| 2 |  | pmatcollpw1.c |  | 
						
							| 3 |  | pmatcollpw1.b |  | 
						
							| 4 |  | pmatcollpw1.m |  | 
						
							| 5 |  | pmatcollpw1.e |  | 
						
							| 6 |  | pmatcollpw1.x |  | 
						
							| 7 |  | simpl2 |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | simprl |  | 
						
							| 10 |  | simprr |  | 
						
							| 11 |  | simpl3 |  | 
						
							| 12 | 2 8 3 9 10 11 | matecld |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 1 6 8 4 13 14 15 | ply1coe |  | 
						
							| 17 | 7 12 16 | syl2anc |  | 
						
							| 18 | 7 | adantr |  | 
						
							| 19 | 11 | adantr |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 |  | simpr |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 | 1 2 3 | decpmate |  | 
						
							| 24 | 18 19 20 22 23 | syl31anc |  | 
						
							| 25 | 24 | eqcomd |  | 
						
							| 26 | 5 | eqcomi |  | 
						
							| 27 | 26 | oveqi |  | 
						
							| 28 | 27 | a1i |  | 
						
							| 29 | 25 28 | oveq12d |  | 
						
							| 30 | 29 | mpteq2dva |  | 
						
							| 31 | 30 | oveq2d |  | 
						
							| 32 | 17 31 | eqtrd |  |