| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw1.p |  | 
						
							| 2 |  | pmatcollpw1.c |  | 
						
							| 3 |  | pmatcollpw1.b |  | 
						
							| 4 |  | pmatcollpw1.m |  | 
						
							| 5 |  | pmatcollpw1.e |  | 
						
							| 6 |  | pmatcollpw1.x |  | 
						
							| 7 | 1 2 3 4 5 6 | pmatcollpw1lem2 |  | 
						
							| 8 |  | eqidd |  | 
						
							| 9 |  | oveq12 |  | 
						
							| 10 | 9 | oveq1d |  | 
						
							| 11 | 10 | mpteq2dv |  | 
						
							| 12 | 11 | oveq2d |  | 
						
							| 13 | 12 | adantl |  | 
						
							| 14 |  | simprl |  | 
						
							| 15 |  | simprr |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 1 | ply1ring |  | 
						
							| 19 |  | ringcmn |  | 
						
							| 20 | 18 19 | syl |  | 
						
							| 21 | 20 | 3ad2ant2 |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 |  | nn0ex |  | 
						
							| 24 | 23 | a1i |  | 
						
							| 25 |  | simpl2 |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 |  | eqid |  | 
						
							| 30 |  | simplrl |  | 
						
							| 31 | 15 | adantr |  | 
						
							| 32 |  | simpl3 |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 |  | simpr |  | 
						
							| 35 | 1 2 3 27 29 | decpmatcl |  | 
						
							| 36 | 26 33 34 35 | syl3anc |  | 
						
							| 37 | 27 28 29 30 31 36 | matecld |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 | 28 1 6 4 38 5 16 | ply1tmcl |  | 
						
							| 40 | 26 37 34 39 | syl3anc |  | 
						
							| 41 | 40 | fmpttd |  | 
						
							| 42 | 1 2 3 4 5 6 | pmatcollpw1lem1 |  | 
						
							| 43 | 42 | 3expb |  | 
						
							| 44 | 16 17 22 24 41 43 | gsumcl |  | 
						
							| 45 | 8 13 14 15 44 | ovmpod |  | 
						
							| 46 | 7 45 | eqtr4d |  | 
						
							| 47 | 46 | ralrimivva |  | 
						
							| 48 |  | simp3 |  | 
						
							| 49 |  | simp1 |  | 
						
							| 50 | 18 | 3ad2ant2 |  | 
						
							| 51 | 21 | 3ad2ant1 |  | 
						
							| 52 | 23 | a1i |  | 
						
							| 53 |  | simpl12 |  | 
						
							| 54 |  | simpl2 |  | 
						
							| 55 |  | simpl3 |  | 
						
							| 56 | 48 | 3ad2ant1 |  | 
						
							| 57 | 56 | adantr |  | 
						
							| 58 |  | simpr |  | 
						
							| 59 | 53 57 58 35 | syl3anc |  | 
						
							| 60 | 27 28 29 54 55 59 | matecld |  | 
						
							| 61 | 28 1 6 4 38 5 16 | ply1tmcl |  | 
						
							| 62 | 53 60 58 61 | syl3anc |  | 
						
							| 63 | 62 | fmpttd |  | 
						
							| 64 | 1 2 3 4 5 6 | pmatcollpw1lem1 |  | 
						
							| 65 | 16 17 51 52 63 64 | gsumcl |  | 
						
							| 66 | 2 16 3 49 50 65 | matbas2d |  | 
						
							| 67 | 2 3 | eqmat |  | 
						
							| 68 | 48 66 67 | syl2anc |  | 
						
							| 69 | 47 68 | mpbird |  |