| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmatcollpw1.p |
|
| 2 |
|
pmatcollpw1.c |
|
| 3 |
|
pmatcollpw1.b |
|
| 4 |
|
pmatcollpw1.m |
|
| 5 |
|
pmatcollpw1.e |
|
| 6 |
|
pmatcollpw1.x |
|
| 7 |
1 2 3 4 5 6
|
pmatcollpw1lem2 |
|
| 8 |
|
eqidd |
|
| 9 |
|
oveq12 |
|
| 10 |
9
|
oveq1d |
|
| 11 |
10
|
mpteq2dv |
|
| 12 |
11
|
oveq2d |
|
| 13 |
12
|
adantl |
|
| 14 |
|
simprl |
|
| 15 |
|
simprr |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
1
|
ply1ring |
|
| 19 |
|
ringcmn |
|
| 20 |
18 19
|
syl |
|
| 21 |
20
|
3ad2ant2 |
|
| 22 |
21
|
adantr |
|
| 23 |
|
nn0ex |
|
| 24 |
23
|
a1i |
|
| 25 |
|
simpl2 |
|
| 26 |
25
|
adantr |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
|
eqid |
|
| 30 |
|
simplrl |
|
| 31 |
15
|
adantr |
|
| 32 |
|
simpl3 |
|
| 33 |
32
|
adantr |
|
| 34 |
|
simpr |
|
| 35 |
1 2 3 27 29
|
decpmatcl |
|
| 36 |
26 33 34 35
|
syl3anc |
|
| 37 |
27 28 29 30 31 36
|
matecld |
|
| 38 |
|
eqid |
|
| 39 |
28 1 6 4 38 5 16
|
ply1tmcl |
|
| 40 |
26 37 34 39
|
syl3anc |
|
| 41 |
40
|
fmpttd |
|
| 42 |
1 2 3 4 5 6
|
pmatcollpw1lem1 |
|
| 43 |
42
|
3expb |
|
| 44 |
16 17 22 24 41 43
|
gsumcl |
|
| 45 |
8 13 14 15 44
|
ovmpod |
|
| 46 |
7 45
|
eqtr4d |
|
| 47 |
46
|
ralrimivva |
|
| 48 |
|
simp3 |
|
| 49 |
|
simp1 |
|
| 50 |
18
|
3ad2ant2 |
|
| 51 |
21
|
3ad2ant1 |
|
| 52 |
23
|
a1i |
|
| 53 |
|
simpl12 |
|
| 54 |
|
simpl2 |
|
| 55 |
|
simpl3 |
|
| 56 |
48
|
3ad2ant1 |
|
| 57 |
56
|
adantr |
|
| 58 |
|
simpr |
|
| 59 |
53 57 58 35
|
syl3anc |
|
| 60 |
27 28 29 54 55 59
|
matecld |
|
| 61 |
28 1 6 4 38 5 16
|
ply1tmcl |
|
| 62 |
53 60 58 61
|
syl3anc |
|
| 63 |
62
|
fmpttd |
|
| 64 |
1 2 3 4 5 6
|
pmatcollpw1lem1 |
|
| 65 |
16 17 51 52 63 64
|
gsumcl |
|
| 66 |
2 16 3 49 50 65
|
matbas2d |
|
| 67 |
2 3
|
eqmat |
|
| 68 |
48 66 67
|
syl2anc |
|
| 69 |
47 68
|
mpbird |
|