| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmatcollpw1.p |
|
| 2 |
|
pmatcollpw1.c |
|
| 3 |
|
pmatcollpw1.b |
|
| 4 |
|
pmatcollpw1.m |
|
| 5 |
|
pmatcollpw1.e |
|
| 6 |
|
pmatcollpw1.x |
|
| 7 |
|
fvexd |
|
| 8 |
|
ovexd |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
oveqd |
|
| 11 |
|
oveq1 |
|
| 12 |
10 11
|
oveq12d |
|
| 13 |
|
eqid |
|
| 14 |
|
simp2 |
|
| 15 |
|
simp3 |
|
| 16 |
|
simp13 |
|
| 17 |
2 13 3 14 15 16
|
matecld |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
18 13 1 19
|
coe1ae0 |
|
| 21 |
17 20
|
syl |
|
| 22 |
|
simpl12 |
|
| 23 |
16
|
adantr |
|
| 24 |
|
simpr |
|
| 25 |
|
3simpc |
|
| 26 |
25
|
adantr |
|
| 27 |
1 2 3
|
decpmate |
|
| 28 |
22 23 24 26 27
|
syl31anc |
|
| 29 |
28
|
adantr |
|
| 30 |
|
simpr |
|
| 31 |
29 30
|
eqtrd |
|
| 32 |
31
|
oveq1d |
|
| 33 |
|
eqid |
|
| 34 |
1 6 33 5 13
|
ply1moncl |
|
| 35 |
22 24 34
|
syl2anc |
|
| 36 |
1 13 4 19
|
ply10s0 |
|
| 37 |
22 35 36
|
syl2anc |
|
| 38 |
37
|
adantr |
|
| 39 |
32 38
|
eqtrd |
|
| 40 |
39
|
ex |
|
| 41 |
40
|
imim2d |
|
| 42 |
41
|
ralimdva |
|
| 43 |
42
|
reximdv |
|
| 44 |
21 43
|
mpd |
|
| 45 |
7 8 12 44
|
mptnn0fsuppd |
|