Metamath Proof Explorer


Theorem pmatcollpwfi

Description: Write a polynomial matrix (over a commutative ring) as a finite sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 4-Nov-2019) (Revised by AV, 4-Dec-2019) (Proof shortened by AV, 3-Jul-2022)

Ref Expression
Hypotheses pmatcollpw.p P = Poly 1 R
pmatcollpw.c C = N Mat P
pmatcollpw.b B = Base C
pmatcollpw.m ˙ = C
pmatcollpw.e × ˙ = mulGrp P
pmatcollpw.x X = var 1 R
pmatcollpw.t T = N matToPolyMat R
Assertion pmatcollpwfi N Fin R CRing M B s 0 M = C n = 0 s n × ˙ X ˙ T M decompPMat n

Proof

Step Hyp Ref Expression
1 pmatcollpw.p P = Poly 1 R
2 pmatcollpw.c C = N Mat P
3 pmatcollpw.b B = Base C
4 pmatcollpw.m ˙ = C
5 pmatcollpw.e × ˙ = mulGrp P
6 pmatcollpw.x X = var 1 R
7 pmatcollpw.t T = N matToPolyMat R
8 crngring R CRing R Ring
9 8 3ad2ant2 N Fin R CRing M B R Ring
10 simp3 N Fin R CRing M B M B
11 eqid N Mat R = N Mat R
12 eqid 0 N Mat R = 0 N Mat R
13 1 2 3 11 12 decpmataa0 R Ring M B s 0 n 0 s < n M decompPMat n = 0 N Mat R
14 9 10 13 syl2anc N Fin R CRing M B s 0 n 0 s < n M decompPMat n = 0 N Mat R
15 1 2 3 4 5 6 7 pmatcollpw N Fin R CRing M B M = C n 0 n × ˙ X ˙ T M decompPMat n
16 15 ad2antrr N Fin R CRing M B s 0 n 0 s < n M decompPMat n = 0 N Mat R M = C n 0 n × ˙ X ˙ T M decompPMat n
17 eqid 0 C = 0 C
18 simp1 N Fin R CRing M B N Fin
19 1 2 pmatring N Fin R Ring C Ring
20 18 9 19 syl2anc N Fin R CRing M B C Ring
21 ringcmn C Ring C CMnd
22 20 21 syl N Fin R CRing M B C CMnd
23 22 ad2antrr N Fin R CRing M B s 0 n 0 s < n M decompPMat n = 0 N Mat R C CMnd
24 18 adantr N Fin R CRing M B n 0 N Fin
25 9 adantr N Fin R CRing M B n 0 R Ring
26 1 ply1ring R Ring P Ring
27 25 26 syl N Fin R CRing M B n 0 P Ring
28 9 anim1i N Fin R CRing M B n 0 R Ring n 0
29 eqid mulGrp P = mulGrp P
30 eqid Base P = Base P
31 1 6 29 5 30 ply1moncl R Ring n 0 n × ˙ X Base P
32 28 31 syl N Fin R CRing M B n 0 n × ˙ X Base P
33 simpl2 N Fin R CRing M B n 0 R CRing
34 10 adantr N Fin R CRing M B n 0 M B
35 simpr N Fin R CRing M B n 0 n 0
36 eqid Base N Mat R = Base N Mat R
37 1 2 3 11 36 decpmatcl R CRing M B n 0 M decompPMat n Base N Mat R
38 33 34 35 37 syl3anc N Fin R CRing M B n 0 M decompPMat n Base N Mat R
39 7 11 36 1 2 3 mat2pmatbas0 N Fin R Ring M decompPMat n Base N Mat R T M decompPMat n B
40 24 25 38 39 syl3anc N Fin R CRing M B n 0 T M decompPMat n B
41 30 2 3 4 matvscl N Fin P Ring n × ˙ X Base P T M decompPMat n B n × ˙ X ˙ T M decompPMat n B
42 24 27 32 40 41 syl22anc N Fin R CRing M B n 0 n × ˙ X ˙ T M decompPMat n B
43 42 ralrimiva N Fin R CRing M B n 0 n × ˙ X ˙ T M decompPMat n B
44 43 ad2antrr N Fin R CRing M B s 0 n 0 s < n M decompPMat n = 0 N Mat R n 0 n × ˙ X ˙ T M decompPMat n B
45 simplr N Fin R CRing M B s 0 n 0 s < n M decompPMat n = 0 N Mat R s 0
46 fveq2 M decompPMat n = 0 N Mat R T M decompPMat n = T 0 N Mat R
47 9 18 jca N Fin R CRing M B R Ring N Fin
48 47 ad2antrr N Fin R CRing M B s 0 n 0 R Ring N Fin
49 eqid 0 N Mat P = 0 N Mat P
50 7 1 12 49 0mat2pmat R Ring N Fin T 0 N Mat R = 0 N Mat P
51 48 50 syl N Fin R CRing M B s 0 n 0 T 0 N Mat R = 0 N Mat P
52 46 51 sylan9eqr N Fin R CRing M B s 0 n 0 M decompPMat n = 0 N Mat R T M decompPMat n = 0 N Mat P
53 52 oveq2d N Fin R CRing M B s 0 n 0 M decompPMat n = 0 N Mat R n × ˙ X ˙ T M decompPMat n = n × ˙ X ˙ 0 N Mat P
54 1 2 pmatlmod N Fin R Ring C LMod
55 18 9 54 syl2anc N Fin R CRing M B C LMod
56 55 ad2antrr N Fin R CRing M B s 0 n 0 C LMod
57 28 adantlr N Fin R CRing M B s 0 n 0 R Ring n 0
58 57 31 syl N Fin R CRing M B s 0 n 0 n × ˙ X Base P
59 1 ply1crng R CRing P CRing
60 59 anim2i N Fin R CRing N Fin P CRing
61 60 3adant3 N Fin R CRing M B N Fin P CRing
62 2 matsca2 N Fin P CRing P = Scalar C
63 61 62 syl N Fin R CRing M B P = Scalar C
64 63 eqcomd N Fin R CRing M B Scalar C = P
65 64 ad2antrr N Fin R CRing M B s 0 n 0 Scalar C = P
66 65 fveq2d N Fin R CRing M B s 0 n 0 Base Scalar C = Base P
67 58 66 eleqtrrd N Fin R CRing M B s 0 n 0 n × ˙ X Base Scalar C
68 2 eqcomi N Mat P = C
69 68 fveq2i 0 N Mat P = 0 C
70 69 oveq2i n × ˙ X ˙ 0 N Mat P = n × ˙ X ˙ 0 C
71 eqid Scalar C = Scalar C
72 eqid Base Scalar C = Base Scalar C
73 71 4 72 17 lmodvs0 C LMod n × ˙ X Base Scalar C n × ˙ X ˙ 0 C = 0 C
74 70 73 syl5eq C LMod n × ˙ X Base Scalar C n × ˙ X ˙ 0 N Mat P = 0 C
75 56 67 74 syl2anc N Fin R CRing M B s 0 n 0 n × ˙ X ˙ 0 N Mat P = 0 C
76 75 adantr N Fin R CRing M B s 0 n 0 M decompPMat n = 0 N Mat R n × ˙ X ˙ 0 N Mat P = 0 C
77 53 76 eqtrd N Fin R CRing M B s 0 n 0 M decompPMat n = 0 N Mat R n × ˙ X ˙ T M decompPMat n = 0 C
78 77 ex N Fin R CRing M B s 0 n 0 M decompPMat n = 0 N Mat R n × ˙ X ˙ T M decompPMat n = 0 C
79 78 imim2d N Fin R CRing M B s 0 n 0 s < n M decompPMat n = 0 N Mat R s < n n × ˙ X ˙ T M decompPMat n = 0 C
80 79 ralimdva N Fin R CRing M B s 0 n 0 s < n M decompPMat n = 0 N Mat R n 0 s < n n × ˙ X ˙ T M decompPMat n = 0 C
81 80 imp N Fin R CRing M B s 0 n 0 s < n M decompPMat n = 0 N Mat R n 0 s < n n × ˙ X ˙ T M decompPMat n = 0 C
82 3 17 23 44 45 81 gsummptnn0fz N Fin R CRing M B s 0 n 0 s < n M decompPMat n = 0 N Mat R C n 0 n × ˙ X ˙ T M decompPMat n = C n = 0 s n × ˙ X ˙ T M decompPMat n
83 16 82 eqtrd N Fin R CRing M B s 0 n 0 s < n M decompPMat n = 0 N Mat R M = C n = 0 s n × ˙ X ˙ T M decompPMat n
84 83 ex N Fin R CRing M B s 0 n 0 s < n M decompPMat n = 0 N Mat R M = C n = 0 s n × ˙ X ˙ T M decompPMat n
85 84 reximdva N Fin R CRing M B s 0 n 0 s < n M decompPMat n = 0 N Mat R s 0 M = C n = 0 s n × ˙ X ˙ T M decompPMat n
86 14 85 mpd N Fin R CRing M B s 0 M = C n = 0 s n × ˙ X ˙ T M decompPMat n