Metamath Proof Explorer


Theorem pmatcollpwfi

Description: Write a polynomial matrix (over a commutative ring) as a finite sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 4-Nov-2019) (Revised by AV, 4-Dec-2019) (Proof shortened by AV, 3-Jul-2022)

Ref Expression
Hypotheses pmatcollpw.p P=Poly1R
pmatcollpw.c C=NMatP
pmatcollpw.b B=BaseC
pmatcollpw.m ˙=C
pmatcollpw.e ×˙=mulGrpP
pmatcollpw.x X=var1R
pmatcollpw.t T=NmatToPolyMatR
Assertion pmatcollpwfi NFinRCRingMBs0M=Cn=0sn×˙X˙TMdecompPMatn

Proof

Step Hyp Ref Expression
1 pmatcollpw.p P=Poly1R
2 pmatcollpw.c C=NMatP
3 pmatcollpw.b B=BaseC
4 pmatcollpw.m ˙=C
5 pmatcollpw.e ×˙=mulGrpP
6 pmatcollpw.x X=var1R
7 pmatcollpw.t T=NmatToPolyMatR
8 crngring RCRingRRing
9 8 3ad2ant2 NFinRCRingMBRRing
10 simp3 NFinRCRingMBMB
11 eqid NMatR=NMatR
12 eqid 0NMatR=0NMatR
13 1 2 3 11 12 decpmataa0 RRingMBs0n0s<nMdecompPMatn=0NMatR
14 9 10 13 syl2anc NFinRCRingMBs0n0s<nMdecompPMatn=0NMatR
15 1 2 3 4 5 6 7 pmatcollpw NFinRCRingMBM=Cn0n×˙X˙TMdecompPMatn
16 15 ad2antrr NFinRCRingMBs0n0s<nMdecompPMatn=0NMatRM=Cn0n×˙X˙TMdecompPMatn
17 eqid 0C=0C
18 simp1 NFinRCRingMBNFin
19 1 2 pmatring NFinRRingCRing
20 18 9 19 syl2anc NFinRCRingMBCRing
21 ringcmn CRingCCMnd
22 20 21 syl NFinRCRingMBCCMnd
23 22 ad2antrr NFinRCRingMBs0n0s<nMdecompPMatn=0NMatRCCMnd
24 18 adantr NFinRCRingMBn0NFin
25 9 adantr NFinRCRingMBn0RRing
26 1 ply1ring RRingPRing
27 25 26 syl NFinRCRingMBn0PRing
28 9 anim1i NFinRCRingMBn0RRingn0
29 eqid mulGrpP=mulGrpP
30 eqid BaseP=BaseP
31 1 6 29 5 30 ply1moncl RRingn0n×˙XBaseP
32 28 31 syl NFinRCRingMBn0n×˙XBaseP
33 simpl2 NFinRCRingMBn0RCRing
34 10 adantr NFinRCRingMBn0MB
35 simpr NFinRCRingMBn0n0
36 eqid BaseNMatR=BaseNMatR
37 1 2 3 11 36 decpmatcl RCRingMBn0MdecompPMatnBaseNMatR
38 33 34 35 37 syl3anc NFinRCRingMBn0MdecompPMatnBaseNMatR
39 7 11 36 1 2 3 mat2pmatbas0 NFinRRingMdecompPMatnBaseNMatRTMdecompPMatnB
40 24 25 38 39 syl3anc NFinRCRingMBn0TMdecompPMatnB
41 30 2 3 4 matvscl NFinPRingn×˙XBasePTMdecompPMatnBn×˙X˙TMdecompPMatnB
42 24 27 32 40 41 syl22anc NFinRCRingMBn0n×˙X˙TMdecompPMatnB
43 42 ralrimiva NFinRCRingMBn0n×˙X˙TMdecompPMatnB
44 43 ad2antrr NFinRCRingMBs0n0s<nMdecompPMatn=0NMatRn0n×˙X˙TMdecompPMatnB
45 simplr NFinRCRingMBs0n0s<nMdecompPMatn=0NMatRs0
46 fveq2 MdecompPMatn=0NMatRTMdecompPMatn=T0NMatR
47 9 18 jca NFinRCRingMBRRingNFin
48 47 ad2antrr NFinRCRingMBs0n0RRingNFin
49 eqid 0NMatP=0NMatP
50 7 1 12 49 0mat2pmat RRingNFinT0NMatR=0NMatP
51 48 50 syl NFinRCRingMBs0n0T0NMatR=0NMatP
52 46 51 sylan9eqr NFinRCRingMBs0n0MdecompPMatn=0NMatRTMdecompPMatn=0NMatP
53 52 oveq2d NFinRCRingMBs0n0MdecompPMatn=0NMatRn×˙X˙TMdecompPMatn=n×˙X˙0NMatP
54 1 2 pmatlmod NFinRRingCLMod
55 18 9 54 syl2anc NFinRCRingMBCLMod
56 55 ad2antrr NFinRCRingMBs0n0CLMod
57 28 adantlr NFinRCRingMBs0n0RRingn0
58 57 31 syl NFinRCRingMBs0n0n×˙XBaseP
59 1 ply1crng RCRingPCRing
60 59 anim2i NFinRCRingNFinPCRing
61 60 3adant3 NFinRCRingMBNFinPCRing
62 2 matsca2 NFinPCRingP=ScalarC
63 61 62 syl NFinRCRingMBP=ScalarC
64 63 eqcomd NFinRCRingMBScalarC=P
65 64 ad2antrr NFinRCRingMBs0n0ScalarC=P
66 65 fveq2d NFinRCRingMBs0n0BaseScalarC=BaseP
67 58 66 eleqtrrd NFinRCRingMBs0n0n×˙XBaseScalarC
68 2 eqcomi NMatP=C
69 68 fveq2i 0NMatP=0C
70 69 oveq2i n×˙X˙0NMatP=n×˙X˙0C
71 eqid ScalarC=ScalarC
72 eqid BaseScalarC=BaseScalarC
73 71 4 72 17 lmodvs0 CLModn×˙XBaseScalarCn×˙X˙0C=0C
74 70 73 eqtrid CLModn×˙XBaseScalarCn×˙X˙0NMatP=0C
75 56 67 74 syl2anc NFinRCRingMBs0n0n×˙X˙0NMatP=0C
76 75 adantr NFinRCRingMBs0n0MdecompPMatn=0NMatRn×˙X˙0NMatP=0C
77 53 76 eqtrd NFinRCRingMBs0n0MdecompPMatn=0NMatRn×˙X˙TMdecompPMatn=0C
78 77 ex NFinRCRingMBs0n0MdecompPMatn=0NMatRn×˙X˙TMdecompPMatn=0C
79 78 imim2d NFinRCRingMBs0n0s<nMdecompPMatn=0NMatRs<nn×˙X˙TMdecompPMatn=0C
80 79 ralimdva NFinRCRingMBs0n0s<nMdecompPMatn=0NMatRn0s<nn×˙X˙TMdecompPMatn=0C
81 80 imp NFinRCRingMBs0n0s<nMdecompPMatn=0NMatRn0s<nn×˙X˙TMdecompPMatn=0C
82 3 17 23 44 45 81 gsummptnn0fz NFinRCRingMBs0n0s<nMdecompPMatn=0NMatRCn0n×˙X˙TMdecompPMatn=Cn=0sn×˙X˙TMdecompPMatn
83 16 82 eqtrd NFinRCRingMBs0n0s<nMdecompPMatn=0NMatRM=Cn=0sn×˙X˙TMdecompPMatn
84 83 ex NFinRCRingMBs0n0s<nMdecompPMatn=0NMatRM=Cn=0sn×˙X˙TMdecompPMatn
85 84 reximdva NFinRCRingMBs0n0s<nMdecompPMatn=0NMatRs0M=Cn=0sn×˙X˙TMdecompPMatn
86 14 85 mpd NFinRCRingMBs0M=Cn=0sn×˙X˙TMdecompPMatn