Metamath Proof Explorer


Theorem pmatlmod

Description: The set of polynomial matrices over a ring is a left module. (Contributed by AV, 6-Nov-2019)

Ref Expression
Hypotheses pmatring.p P=Poly1R
pmatring.c C=NMatP
Assertion pmatlmod NFinRRingCLMod

Proof

Step Hyp Ref Expression
1 pmatring.p P=Poly1R
2 pmatring.c C=NMatP
3 1 ply1ring RRingPRing
4 2 matlmod NFinPRingCLMod
5 3 4 sylan2 NFinRRingCLMod