| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pmatcollpw.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pmatcollpw.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pmatcollpw.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 5 |  | pmatcollpw.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | pmatcollpw.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | pmatcollpw.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 8 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 10 |  | simp3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑀  ∈  𝐵 ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑁  Mat  𝑅 )  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 12 |  | eqid | ⊢ ( 0g ‘ ( 𝑁  Mat  𝑅 ) )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 13 | 1 2 3 11 12 | decpmataa0 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) ) | 
						
							| 14 | 9 10 13 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 | pmatcollpw | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) ) | 
						
							| 16 | 15 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) ) | 
						
							| 17 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 18 |  | simp1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑁  ∈  Fin ) | 
						
							| 19 | 1 2 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  Ring ) | 
						
							| 20 | 18 9 19 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐶  ∈  Ring ) | 
						
							| 21 |  | ringcmn | ⊢ ( 𝐶  ∈  Ring  →  𝐶  ∈  CMnd ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐶  ∈  CMnd ) | 
						
							| 23 | 22 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) )  →  𝐶  ∈  CMnd ) | 
						
							| 24 | 18 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑁  ∈  Fin ) | 
						
							| 25 | 9 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 26 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 27 | 25 26 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑃  ∈  Ring ) | 
						
							| 28 | 9 | anim1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑅  ∈  Ring  ∧  𝑛  ∈  ℕ0 ) ) | 
						
							| 29 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 30 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 31 | 1 6 29 5 30 | ply1moncl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 32 | 28 31 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 33 |  | simpl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  CRing ) | 
						
							| 34 | 10 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑀  ∈  𝐵 ) | 
						
							| 35 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 36 |  | eqid | ⊢ ( Base ‘ ( 𝑁  Mat  𝑅 ) )  =  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 37 | 1 2 3 11 36 | decpmatcl | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 38 | 33 34 35 37 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 39 | 7 11 36 1 2 3 | mat2pmatbas0 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) )  ∈  𝐵 ) | 
						
							| 40 | 24 25 38 39 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) )  ∈  𝐵 ) | 
						
							| 41 | 30 2 3 4 | matvscl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring )  ∧  ( ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) )  ∈  𝐵 ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  ∈  𝐵 ) | 
						
							| 42 | 24 27 32 40 41 | syl22anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  ∈  𝐵 ) | 
						
							| 43 | 42 | ralrimiva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∀ 𝑛  ∈  ℕ0 ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  ∈  𝐵 ) | 
						
							| 44 | 43 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) )  →  ∀ 𝑛  ∈  ℕ0 ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  ∈  𝐵 ) | 
						
							| 45 |  | simplr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) )  →  𝑠  ∈  ℕ0 ) | 
						
							| 46 |  | fveq2 | ⊢ ( ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) )  =  ( 𝑇 ‘ ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) ) | 
						
							| 47 | 9 18 | jca | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin ) ) | 
						
							| 48 | 47 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin ) ) | 
						
							| 49 |  | eqid | ⊢ ( 0g ‘ ( 𝑁  Mat  𝑃 ) )  =  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) | 
						
							| 50 | 7 1 12 49 | 0mat2pmat | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  ( 𝑇 ‘ ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  =  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) ) | 
						
							| 51 | 48 50 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑇 ‘ ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  =  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) ) | 
						
							| 52 | 46 51 | sylan9eqr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) )  =  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  =  ( ( 𝑛  ↑  𝑋 )  ∗  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) ) ) | 
						
							| 54 | 1 2 | pmatlmod | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  LMod ) | 
						
							| 55 | 18 9 54 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐶  ∈  LMod ) | 
						
							| 56 | 55 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  𝐶  ∈  LMod ) | 
						
							| 57 | 28 | adantlr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑅  ∈  Ring  ∧  𝑛  ∈  ℕ0 ) ) | 
						
							| 58 | 57 31 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 59 | 1 | ply1crng | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  CRing ) | 
						
							| 60 | 59 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing ) ) | 
						
							| 61 | 60 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing ) ) | 
						
							| 62 | 2 | matsca2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing )  →  𝑃  =  ( Scalar ‘ 𝐶 ) ) | 
						
							| 63 | 61 62 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑃  =  ( Scalar ‘ 𝐶 ) ) | 
						
							| 64 | 63 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( Scalar ‘ 𝐶 )  =  𝑃 ) | 
						
							| 65 | 64 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( Scalar ‘ 𝐶 )  =  𝑃 ) | 
						
							| 66 | 65 | fveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( Base ‘ ( Scalar ‘ 𝐶 ) )  =  ( Base ‘ 𝑃 ) ) | 
						
							| 67 | 58 66 | eleqtrrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) | 
						
							| 68 | 2 | eqcomi | ⊢ ( 𝑁  Mat  𝑃 )  =  𝐶 | 
						
							| 69 | 68 | fveq2i | ⊢ ( 0g ‘ ( 𝑁  Mat  𝑃 ) )  =  ( 0g ‘ 𝐶 ) | 
						
							| 70 | 69 | oveq2i | ⊢ ( ( 𝑛  ↑  𝑋 )  ∗  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) )  =  ( ( 𝑛  ↑  𝑋 )  ∗  ( 0g ‘ 𝐶 ) ) | 
						
							| 71 |  | eqid | ⊢ ( Scalar ‘ 𝐶 )  =  ( Scalar ‘ 𝐶 ) | 
						
							| 72 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) )  =  ( Base ‘ ( Scalar ‘ 𝐶 ) ) | 
						
							| 73 | 71 4 72 17 | lmodvs0 | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 0g ‘ 𝐶 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 74 | 70 73 | eqtrid | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 75 | 56 67 74 | syl2anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 77 | 53 76 | eqtrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 78 | 77 | ex | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  =  ( 0g ‘ 𝐶 ) ) ) | 
						
							| 79 | 78 | imim2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  →  ( 𝑠  <  𝑛  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  =  ( 0g ‘ 𝐶 ) ) ) ) | 
						
							| 80 | 79 | ralimdva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  →  ( ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  =  ( 0g ‘ 𝐶 ) ) ) ) | 
						
							| 81 | 80 | imp | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  =  ( 0g ‘ 𝐶 ) ) ) | 
						
							| 82 | 3 17 23 44 45 81 | gsummptnn0fz | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) )  →  ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) )  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) ) | 
						
							| 83 | 16 82 | eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) ) | 
						
							| 84 | 83 | ex | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  →  ( ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) ) ) | 
						
							| 85 | 84 | reximdva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  →  ∃ 𝑠  ∈  ℕ0 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) ) ) | 
						
							| 86 | 14 85 | mpd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) ) |