| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pmatcollpw.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pmatcollpw.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pmatcollpw.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 5 |  | pmatcollpw.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | pmatcollpw.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | pmatcollpw.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 8 |  | pmatcollpw3.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 9 |  | pmatcollpw3.d | ⊢ 𝐷  =  ( Base ‘ 𝐴 ) | 
						
							| 10 |  | dmeq | ⊢ ( 𝑥  =  𝑦  →  dom  𝑥  =  dom  𝑦 ) | 
						
							| 11 | 10 | dmeqd | ⊢ ( 𝑥  =  𝑦  →  dom  dom  𝑥  =  dom  dom  𝑦 ) | 
						
							| 12 |  | oveq | ⊢ ( 𝑥  =  𝑦  →  ( 𝑖 𝑥 𝑗 )  =  ( 𝑖 𝑦 𝑗 ) ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ) | 
						
							| 14 | 13 | fveq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 )  =  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) ) | 
						
							| 15 | 11 11 14 | mpoeq123dv | ⊢ ( 𝑥  =  𝑦  →  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑘  =  𝑙  →  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 )  =  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) | 
						
							| 17 | 16 | mpoeq3dv | ⊢ ( 𝑘  =  𝑙  →  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) ) | 
						
							| 18 | 15 17 | cbvmpov | ⊢ ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  =  ( 𝑦  ∈  𝐵 ,  𝑙  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) ) | 
						
							| 19 |  | dmexg | ⊢ ( 𝑦  ∈  𝐵  →  dom  𝑦  ∈  V ) | 
						
							| 20 | 19 | dmexd | ⊢ ( 𝑦  ∈  𝐵  →  dom  dom  𝑦  ∈  V ) | 
						
							| 21 | 20 20 | jca | ⊢ ( 𝑦  ∈  𝐵  →  ( dom  dom  𝑦  ∈  V  ∧  dom  dom  𝑦  ∈  V ) ) | 
						
							| 22 | 21 | ad2antrl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑙  ∈  𝐼 ) )  →  ( dom  dom  𝑦  ∈  V  ∧  dom  dom  𝑦  ∈  V ) ) | 
						
							| 23 |  | mpoexga | ⊢ ( ( dom  dom  𝑦  ∈  V  ∧  dom  dom  𝑦  ∈  V )  →  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) )  ∈  V ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑙  ∈  𝐼 ) )  →  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) )  ∈  V ) | 
						
							| 25 | 24 | ralrimivva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ∀ 𝑦  ∈  𝐵 ∀ 𝑙  ∈  𝐼 ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) )  ∈  V ) | 
						
							| 26 |  | simprr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  𝐼  ≠  ∅ ) | 
						
							| 27 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 28 | 27 | ssex | ⊢ ( 𝐼  ⊆  ℕ0  →  𝐼  ∈  V ) | 
						
							| 29 | 28 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  𝐼  ∈  V ) | 
						
							| 30 |  | simp3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑀  ∈  𝐵 ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  𝑀  ∈  𝐵 ) | 
						
							| 32 | 18 25 26 29 31 | mpocurryvald | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 )  =  ( 𝑙  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑦 ⦌ ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) ) ) | 
						
							| 33 |  | fveq2 | ⊢ ( 𝑙  =  𝑘  →  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 )  =  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) ) | 
						
							| 34 | 33 | mpoeq3dv | ⊢ ( 𝑙  =  𝑘  →  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) )  =  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 35 | 34 | csbeq2dv | ⊢ ( 𝑙  =  𝑘  →  ⦋ 𝑀  /  𝑦 ⦌ ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) )  =  ⦋ 𝑀  /  𝑦 ⦌ ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 36 |  | eqcom | ⊢ ( 𝑥  =  𝑦  ↔  𝑦  =  𝑥 ) | 
						
							| 37 |  | eqcom | ⊢ ( ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) )  ↔  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 38 | 15 36 37 | 3imtr3i | ⊢ ( 𝑦  =  𝑥  →  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 39 | 38 | cbvcsbv | ⊢ ⦋ 𝑀  /  𝑦 ⦌ ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) )  =  ⦋ 𝑀  /  𝑥 ⦌ ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) | 
						
							| 40 | 35 39 | eqtrdi | ⊢ ( 𝑙  =  𝑘  →  ⦋ 𝑀  /  𝑦 ⦌ ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) )  =  ⦋ 𝑀  /  𝑥 ⦌ ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 41 | 40 | cbvmptv | ⊢ ( 𝑙  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑦 ⦌ ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) )  =  ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑥 ⦌ ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 42 | 32 41 | eqtrdi | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 )  =  ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑥 ⦌ ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 43 |  | dmeq | ⊢ ( 𝑥  =  𝑀  →  dom  𝑥  =  dom  𝑀 ) | 
						
							| 44 | 43 | dmeqd | ⊢ ( 𝑥  =  𝑀  →  dom  dom  𝑥  =  dom  dom  𝑀 ) | 
						
							| 45 |  | oveq | ⊢ ( 𝑥  =  𝑀  →  ( 𝑖 𝑥 𝑗 )  =  ( 𝑖 𝑀 𝑗 ) ) | 
						
							| 46 | 45 | fveq2d | ⊢ ( 𝑥  =  𝑀  →  ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ) | 
						
							| 47 | 46 | fveq1d | ⊢ ( 𝑥  =  𝑀  →  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) | 
						
							| 48 | 44 44 47 | mpoeq123dv | ⊢ ( 𝑥  =  𝑀  →  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑀 ,  𝑗  ∈  dom  dom  𝑀  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  =  𝑀 )  →  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑀 ,  𝑗  ∈  dom  dom  𝑀  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 50 | 30 49 | csbied | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ⦋ 𝑀  /  𝑥 ⦌ ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑀 ,  𝑗  ∈  dom  dom  𝑀  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 51 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 52 | 2 51 3 | matbas2i | ⊢ ( 𝑀  ∈  𝐵  →  𝑀  ∈  ( ( Base ‘ 𝑃 )  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 53 |  | elmapi | ⊢ ( 𝑀  ∈  ( ( Base ‘ 𝑃 )  ↑m  ( 𝑁  ×  𝑁 ) )  →  𝑀 : ( 𝑁  ×  𝑁 ) ⟶ ( Base ‘ 𝑃 ) ) | 
						
							| 54 |  | fdm | ⊢ ( 𝑀 : ( 𝑁  ×  𝑁 ) ⟶ ( Base ‘ 𝑃 )  →  dom  𝑀  =  ( 𝑁  ×  𝑁 ) ) | 
						
							| 55 | 54 | dmeqd | ⊢ ( 𝑀 : ( 𝑁  ×  𝑁 ) ⟶ ( Base ‘ 𝑃 )  →  dom  dom  𝑀  =  dom  ( 𝑁  ×  𝑁 ) ) | 
						
							| 56 |  | dmxpid | ⊢ dom  ( 𝑁  ×  𝑁 )  =  𝑁 | 
						
							| 57 | 55 56 | eqtr2di | ⊢ ( 𝑀 : ( 𝑁  ×  𝑁 ) ⟶ ( Base ‘ 𝑃 )  →  𝑁  =  dom  dom  𝑀 ) | 
						
							| 58 | 52 53 57 | 3syl | ⊢ ( 𝑀  ∈  𝐵  →  𝑁  =  dom  dom  𝑀 ) | 
						
							| 59 | 58 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑁  =  dom  dom  𝑀 ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  𝑁  =  dom  dom  𝑀 ) | 
						
							| 61 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  𝑚  =  𝑀 ) | 
						
							| 62 | 61 | oveqd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  ( 𝑖 𝑚 𝑗 )  =  ( 𝑖 𝑀 𝑗 ) ) | 
						
							| 63 | 62 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ) | 
						
							| 64 | 63 | fveq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) | 
						
							| 65 | 60 60 64 | mpoeq123dv | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑀 ,  𝑗  ∈  dom  dom  𝑀  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 66 | 30 65 | csbied | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑀 ,  𝑗  ∈  dom  dom  𝑀  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 67 | 50 66 | eqtr4d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ⦋ 𝑀  /  𝑥 ⦌ ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  =  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ⦋ 𝑀  /  𝑥 ⦌ ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  =  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 69 | 68 | mpteq2dv | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑥 ⦌ ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  =  ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 70 | 42 69 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 )  =  ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 71 |  | oveq | ⊢ ( 𝑚  =  𝑀  →  ( 𝑖 𝑚 𝑗 )  =  ( 𝑖 𝑀 𝑗 ) ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  ( 𝑖 𝑚 𝑗 )  =  ( 𝑖 𝑀 𝑗 ) ) | 
						
							| 73 | 72 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ) | 
						
							| 74 | 73 | fveq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) | 
						
							| 75 | 74 | mpoeq3dv | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 76 | 30 75 | csbied | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 77 | 76 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  →  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 78 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 79 |  | simpll1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  →  𝑁  ∈  Fin ) | 
						
							| 80 |  | simpll2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  →  𝑅  ∈  CRing ) | 
						
							| 81 |  | simp2 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑁 ) | 
						
							| 82 |  | simp3 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 83 | 31 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  →  𝑀  ∈  𝐵 ) | 
						
							| 84 | 83 | 3ad2ant1 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑀  ∈  𝐵 ) | 
						
							| 85 | 2 51 3 81 82 84 | matecld | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑀 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 86 |  | ssel | ⊢ ( 𝐼  ⊆  ℕ0  →  ( 𝑘  ∈  𝐼  →  𝑘  ∈  ℕ0 ) ) | 
						
							| 87 | 86 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( 𝑘  ∈  𝐼  →  𝑘  ∈  ℕ0 ) ) | 
						
							| 88 | 87 | imp | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 89 | 88 | 3ad2ant1 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 90 |  | eqid | ⊢ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) | 
						
							| 91 | 90 51 1 78 | coe1fvalcl | ⊢ ( ( ( 𝑖 𝑀 𝑗 )  ∈  ( Base ‘ 𝑃 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 92 | 85 89 91 | syl2anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 93 | 8 78 9 79 80 92 | matbas2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) )  ∈  𝐷 ) | 
						
							| 94 | 77 93 | eqeltrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  →  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) )  ∈  𝐷 ) | 
						
							| 95 | 94 | fmpttd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) : 𝐼 ⟶ 𝐷 ) | 
						
							| 96 | 9 | fvexi | ⊢ 𝐷  ∈  V | 
						
							| 97 | 96 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐷  ∈  V ) | 
						
							| 98 | 28 | adantr | ⊢ ( ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ )  →  𝐼  ∈  V ) | 
						
							| 99 |  | elmapg | ⊢ ( ( 𝐷  ∈  V  ∧  𝐼  ∈  V )  →  ( ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) )  ∈  ( 𝐷  ↑m  𝐼 )  ↔  ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) : 𝐼 ⟶ 𝐷 ) ) | 
						
							| 100 | 97 98 99 | syl2an | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) )  ∈  ( 𝐷  ↑m  𝐼 )  ↔  ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) : 𝐼 ⟶ 𝐷 ) ) | 
						
							| 101 | 95 100 | mpbird | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) )  ∈  ( 𝐷  ↑m  𝐼 ) ) | 
						
							| 102 | 70 101 | eqeltrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 )  ∈  ( 𝐷  ↑m  𝐼 ) ) | 
						
							| 103 |  | fveq1 | ⊢ ( 𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 )  →  ( 𝑓 ‘ 𝑛 )  =  ( ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ‘ 𝑛 ) ) | 
						
							| 104 | 103 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  →  ( 𝑓 ‘ 𝑛 )  =  ( ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ‘ 𝑛 ) ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑓 ‘ 𝑛 )  =  ( ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ‘ 𝑛 ) ) | 
						
							| 106 |  | eqid | ⊢ ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  =  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 107 |  | dmexg | ⊢ ( 𝑥  ∈  𝐵  →  dom  𝑥  ∈  V ) | 
						
							| 108 | 107 | dmexd | ⊢ ( 𝑥  ∈  𝐵  →  dom  dom  𝑥  ∈  V ) | 
						
							| 109 | 108 108 | jca | ⊢ ( 𝑥  ∈  𝐵  →  ( dom  dom  𝑥  ∈  V  ∧  dom  dom  𝑥  ∈  V ) ) | 
						
							| 110 | 109 | ad2antrl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑘  ∈  𝐼 ) )  →  ( dom  dom  𝑥  ∈  V  ∧  dom  dom  𝑥  ∈  V ) ) | 
						
							| 111 |  | mpoexga | ⊢ ( ( dom  dom  𝑥  ∈  V  ∧  dom  dom  𝑥  ∈  V )  →  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  ∈  V ) | 
						
							| 112 | 110 111 | syl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑘  ∈  𝐼 ) )  →  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  ∈  V ) | 
						
							| 113 | 112 | ralrimivva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑘  ∈  𝐼 ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  ∈  V ) | 
						
							| 114 | 29 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  𝐼  ∈  V ) | 
						
							| 115 | 31 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  𝑀  ∈  𝐵 ) | 
						
							| 116 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  𝑛  ∈  𝐼 ) | 
						
							| 117 | 106 113 114 115 116 | fvmpocurryd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ( ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ‘ 𝑛 )  =  ( 𝑀 ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) 𝑛 ) ) | 
						
							| 118 |  | df-decpmat | ⊢  decompPMat   =  ( 𝑥  ∈  V ,  𝑘  ∈  ℕ0  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 119 | 118 | reseq1i | ⊢ (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) )  =  ( ( 𝑥  ∈  V ,  𝑘  ∈  ℕ0  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  ↾  ( 𝐵  ×  𝐼 ) ) | 
						
							| 120 |  | ssv | ⊢ 𝐵  ⊆  V | 
						
							| 121 | 120 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐵  ⊆  V ) | 
						
							| 122 |  | simpl | ⊢ ( ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ )  →  𝐼  ⊆  ℕ0 ) | 
						
							| 123 | 121 122 | anim12i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( 𝐵  ⊆  V  ∧  𝐼  ⊆  ℕ0 ) ) | 
						
							| 124 | 123 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝐵  ⊆  V  ∧  𝐼  ⊆  ℕ0 ) ) | 
						
							| 125 |  | resmpo | ⊢ ( ( 𝐵  ⊆  V  ∧  𝐼  ⊆  ℕ0 )  →  ( ( 𝑥  ∈  V ,  𝑘  ∈  ℕ0  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  ↾  ( 𝐵  ×  𝐼 ) )  =  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 126 | 124 125 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ( ( 𝑥  ∈  V ,  𝑘  ∈  ℕ0  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  ↾  ( 𝐵  ×  𝐼 ) )  =  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 127 | 119 126 | eqtr2id | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  =  (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) ) ) | 
						
							| 128 | 127 | oveqd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑀 ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) 𝑛 )  =  ( 𝑀 (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) ) 𝑛 ) ) | 
						
							| 129 | 117 128 | eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ( ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ‘ 𝑛 )  =  ( 𝑀 (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) ) 𝑛 ) ) | 
						
							| 130 | 129 | adantlr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  ∧  𝑛  ∈  𝐼 )  →  ( ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ‘ 𝑛 )  =  ( 𝑀 (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) ) 𝑛 ) ) | 
						
							| 131 | 105 130 | eqtrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑓 ‘ 𝑛 )  =  ( 𝑀 (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) ) 𝑛 ) ) | 
						
							| 132 | 131 | fveq2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) )  =  ( 𝑇 ‘ ( 𝑀 (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) ) 𝑛 ) ) ) | 
						
							| 133 | 30 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  →  𝑀  ∈  𝐵 ) | 
						
							| 134 |  | ovres | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑛  ∈  𝐼 )  →  ( 𝑀 (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) ) 𝑛 )  =  ( 𝑀  decompPMat  𝑛 ) ) | 
						
							| 135 | 133 134 | sylan | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑀 (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) ) 𝑛 )  =  ( 𝑀  decompPMat  𝑛 ) ) | 
						
							| 136 | 135 | fveq2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑇 ‘ ( 𝑀 (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) ) 𝑛 ) )  =  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) | 
						
							| 137 | 132 136 | eqtrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) )  =  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) | 
						
							| 138 | 137 | oveq2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  ∧  𝑛  ∈  𝐼 )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) )  =  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) | 
						
							| 139 | 138 | mpteq2dva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  →  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) )  =  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) | 
						
							| 140 | 139 | oveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  →  ( 𝐶  Σg  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  =  ( 𝐶  Σg  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) ) | 
						
							| 141 | 140 | eqeq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  →  ( 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) ) ) | 
						
							| 142 | 102 141 | rspcedv | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) )  →  ∃ 𝑓  ∈  ( 𝐷  ↑m  𝐼 ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) |