| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pmatcollpw.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pmatcollpw.b |  |-  B = ( Base ` C ) | 
						
							| 4 |  | pmatcollpw.m |  |-  .* = ( .s ` C ) | 
						
							| 5 |  | pmatcollpw.e |  |-  .^ = ( .g ` ( mulGrp ` P ) ) | 
						
							| 6 |  | pmatcollpw.x |  |-  X = ( var1 ` R ) | 
						
							| 7 |  | pmatcollpw.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 8 |  | pmatcollpw3.a |  |-  A = ( N Mat R ) | 
						
							| 9 |  | pmatcollpw3.d |  |-  D = ( Base ` A ) | 
						
							| 10 |  | dmeq |  |-  ( x = y -> dom x = dom y ) | 
						
							| 11 | 10 | dmeqd |  |-  ( x = y -> dom dom x = dom dom y ) | 
						
							| 12 |  | oveq |  |-  ( x = y -> ( i x j ) = ( i y j ) ) | 
						
							| 13 | 12 | fveq2d |  |-  ( x = y -> ( coe1 ` ( i x j ) ) = ( coe1 ` ( i y j ) ) ) | 
						
							| 14 | 13 | fveq1d |  |-  ( x = y -> ( ( coe1 ` ( i x j ) ) ` k ) = ( ( coe1 ` ( i y j ) ) ` k ) ) | 
						
							| 15 | 11 11 14 | mpoeq123dv |  |-  ( x = y -> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) ) | 
						
							| 16 |  | fveq2 |  |-  ( k = l -> ( ( coe1 ` ( i y j ) ) ` k ) = ( ( coe1 ` ( i y j ) ) ` l ) ) | 
						
							| 17 | 16 | mpoeq3dv |  |-  ( k = l -> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) = ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) ) | 
						
							| 18 | 15 17 | cbvmpov |  |-  ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) = ( y e. B , l e. I |-> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) ) | 
						
							| 19 |  | dmexg |  |-  ( y e. B -> dom y e. _V ) | 
						
							| 20 | 19 | dmexd |  |-  ( y e. B -> dom dom y e. _V ) | 
						
							| 21 | 20 20 | jca |  |-  ( y e. B -> ( dom dom y e. _V /\ dom dom y e. _V ) ) | 
						
							| 22 | 21 | ad2antrl |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ ( y e. B /\ l e. I ) ) -> ( dom dom y e. _V /\ dom dom y e. _V ) ) | 
						
							| 23 |  | mpoexga |  |-  ( ( dom dom y e. _V /\ dom dom y e. _V ) -> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) e. _V ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ ( y e. B /\ l e. I ) ) -> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) e. _V ) | 
						
							| 25 | 24 | ralrimivva |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> A. y e. B A. l e. I ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) e. _V ) | 
						
							| 26 |  | simprr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> I =/= (/) ) | 
						
							| 27 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 28 | 27 | ssex |  |-  ( I C_ NN0 -> I e. _V ) | 
						
							| 29 | 28 | ad2antrl |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> I e. _V ) | 
						
							| 30 |  | simp3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> M e. B ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> M e. B ) | 
						
							| 32 | 18 25 26 29 31 | mpocurryvald |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) = ( l e. I |-> [_ M / y ]_ ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) ) ) | 
						
							| 33 |  | fveq2 |  |-  ( l = k -> ( ( coe1 ` ( i y j ) ) ` l ) = ( ( coe1 ` ( i y j ) ) ` k ) ) | 
						
							| 34 | 33 | mpoeq3dv |  |-  ( l = k -> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) = ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) ) | 
						
							| 35 | 34 | csbeq2dv |  |-  ( l = k -> [_ M / y ]_ ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) = [_ M / y ]_ ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) ) | 
						
							| 36 |  | eqcom |  |-  ( x = y <-> y = x ) | 
						
							| 37 |  | eqcom |  |-  ( ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) <-> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) = ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) | 
						
							| 38 | 15 36 37 | 3imtr3i |  |-  ( y = x -> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) = ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) | 
						
							| 39 | 38 | cbvcsbv |  |-  [_ M / y ]_ ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) = [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) | 
						
							| 40 | 35 39 | eqtrdi |  |-  ( l = k -> [_ M / y ]_ ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) = [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) | 
						
							| 41 | 40 | cbvmptv |  |-  ( l e. I |-> [_ M / y ]_ ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) ) = ( k e. I |-> [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) | 
						
							| 42 | 32 41 | eqtrdi |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) = ( k e. I |-> [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ) | 
						
							| 43 |  | dmeq |  |-  ( x = M -> dom x = dom M ) | 
						
							| 44 | 43 | dmeqd |  |-  ( x = M -> dom dom x = dom dom M ) | 
						
							| 45 |  | oveq |  |-  ( x = M -> ( i x j ) = ( i M j ) ) | 
						
							| 46 | 45 | fveq2d |  |-  ( x = M -> ( coe1 ` ( i x j ) ) = ( coe1 ` ( i M j ) ) ) | 
						
							| 47 | 46 | fveq1d |  |-  ( x = M -> ( ( coe1 ` ( i x j ) ) ` k ) = ( ( coe1 ` ( i M j ) ) ` k ) ) | 
						
							| 48 | 44 44 47 | mpoeq123dv |  |-  ( x = M -> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` k ) ) ) | 
						
							| 49 | 48 | adantl |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ x = M ) -> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` k ) ) ) | 
						
							| 50 | 30 49 | csbied |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` k ) ) ) | 
						
							| 51 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 52 | 2 51 3 | matbas2i |  |-  ( M e. B -> M e. ( ( Base ` P ) ^m ( N X. N ) ) ) | 
						
							| 53 |  | elmapi |  |-  ( M e. ( ( Base ` P ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` P ) ) | 
						
							| 54 |  | fdm |  |-  ( M : ( N X. N ) --> ( Base ` P ) -> dom M = ( N X. N ) ) | 
						
							| 55 | 54 | dmeqd |  |-  ( M : ( N X. N ) --> ( Base ` P ) -> dom dom M = dom ( N X. N ) ) | 
						
							| 56 |  | dmxpid |  |-  dom ( N X. N ) = N | 
						
							| 57 | 55 56 | eqtr2di |  |-  ( M : ( N X. N ) --> ( Base ` P ) -> N = dom dom M ) | 
						
							| 58 | 52 53 57 | 3syl |  |-  ( M e. B -> N = dom dom M ) | 
						
							| 59 | 58 | 3ad2ant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> N = dom dom M ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> N = dom dom M ) | 
						
							| 61 |  | simpr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> m = M ) | 
						
							| 62 | 61 | oveqd |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( i m j ) = ( i M j ) ) | 
						
							| 63 | 62 | fveq2d |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( coe1 ` ( i m j ) ) = ( coe1 ` ( i M j ) ) ) | 
						
							| 64 | 63 | fveq1d |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( ( coe1 ` ( i m j ) ) ` k ) = ( ( coe1 ` ( i M j ) ) ` k ) ) | 
						
							| 65 | 60 60 64 | mpoeq123dv |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` k ) ) ) | 
						
							| 66 | 30 65 | csbied |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` k ) ) ) | 
						
							| 67 | 50 66 | eqtr4d |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) | 
						
							| 68 | 67 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) | 
						
							| 69 | 68 | mpteq2dv |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( k e. I |-> [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) = ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) ) | 
						
							| 70 | 42 69 | eqtrd |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) = ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) ) | 
						
							| 71 |  | oveq |  |-  ( m = M -> ( i m j ) = ( i M j ) ) | 
						
							| 72 | 71 | adantl |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( i m j ) = ( i M j ) ) | 
						
							| 73 | 72 | fveq2d |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( coe1 ` ( i m j ) ) = ( coe1 ` ( i M j ) ) ) | 
						
							| 74 | 73 | fveq1d |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( ( coe1 ` ( i m j ) ) ` k ) = ( ( coe1 ` ( i M j ) ) ` k ) ) | 
						
							| 75 | 74 | mpoeq3dv |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` k ) ) ) | 
						
							| 76 | 30 75 | csbied |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` k ) ) ) | 
						
							| 77 | 76 | ad2antrr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` k ) ) ) | 
						
							| 78 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 79 |  | simpll1 |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> N e. Fin ) | 
						
							| 80 |  | simpll2 |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> R e. CRing ) | 
						
							| 81 |  | simp2 |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) /\ i e. N /\ j e. N ) -> i e. N ) | 
						
							| 82 |  | simp3 |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) /\ i e. N /\ j e. N ) -> j e. N ) | 
						
							| 83 | 31 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> M e. B ) | 
						
							| 84 | 83 | 3ad2ant1 |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) /\ i e. N /\ j e. N ) -> M e. B ) | 
						
							| 85 | 2 51 3 81 82 84 | matecld |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) /\ i e. N /\ j e. N ) -> ( i M j ) e. ( Base ` P ) ) | 
						
							| 86 |  | ssel |  |-  ( I C_ NN0 -> ( k e. I -> k e. NN0 ) ) | 
						
							| 87 | 86 | ad2antrl |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( k e. I -> k e. NN0 ) ) | 
						
							| 88 | 87 | imp |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> k e. NN0 ) | 
						
							| 89 | 88 | 3ad2ant1 |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) /\ i e. N /\ j e. N ) -> k e. NN0 ) | 
						
							| 90 |  | eqid |  |-  ( coe1 ` ( i M j ) ) = ( coe1 ` ( i M j ) ) | 
						
							| 91 | 90 51 1 78 | coe1fvalcl |  |-  ( ( ( i M j ) e. ( Base ` P ) /\ k e. NN0 ) -> ( ( coe1 ` ( i M j ) ) ` k ) e. ( Base ` R ) ) | 
						
							| 92 | 85 89 91 | syl2anc |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) /\ i e. N /\ j e. N ) -> ( ( coe1 ` ( i M j ) ) ` k ) e. ( Base ` R ) ) | 
						
							| 93 | 8 78 9 79 80 92 | matbas2d |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` k ) ) e. D ) | 
						
							| 94 | 77 93 | eqeltrd |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) e. D ) | 
						
							| 95 | 94 | fmpttd |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) : I --> D ) | 
						
							| 96 | 9 | fvexi |  |-  D e. _V | 
						
							| 97 | 96 | a1i |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> D e. _V ) | 
						
							| 98 | 28 | adantr |  |-  ( ( I C_ NN0 /\ I =/= (/) ) -> I e. _V ) | 
						
							| 99 |  | elmapg |  |-  ( ( D e. _V /\ I e. _V ) -> ( ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) e. ( D ^m I ) <-> ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) : I --> D ) ) | 
						
							| 100 | 97 98 99 | syl2an |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) e. ( D ^m I ) <-> ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) : I --> D ) ) | 
						
							| 101 | 95 100 | mpbird |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) e. ( D ^m I ) ) | 
						
							| 102 | 70 101 | eqeltrd |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) e. ( D ^m I ) ) | 
						
							| 103 |  | fveq1 |  |-  ( f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) -> ( f ` n ) = ( ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ` n ) ) | 
						
							| 104 | 103 | adantl |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) -> ( f ` n ) = ( ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ` n ) ) | 
						
							| 105 | 104 | adantr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( f ` n ) = ( ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ` n ) ) | 
						
							| 106 |  | eqid |  |-  ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) = ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) | 
						
							| 107 |  | dmexg |  |-  ( x e. B -> dom x e. _V ) | 
						
							| 108 | 107 | dmexd |  |-  ( x e. B -> dom dom x e. _V ) | 
						
							| 109 | 108 108 | jca |  |-  ( x e. B -> ( dom dom x e. _V /\ dom dom x e. _V ) ) | 
						
							| 110 | 109 | ad2antrl |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) /\ ( x e. B /\ k e. I ) ) -> ( dom dom x e. _V /\ dom dom x e. _V ) ) | 
						
							| 111 |  | mpoexga |  |-  ( ( dom dom x e. _V /\ dom dom x e. _V ) -> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) e. _V ) | 
						
							| 112 | 110 111 | syl |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) /\ ( x e. B /\ k e. I ) ) -> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) e. _V ) | 
						
							| 113 | 112 | ralrimivva |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> A. x e. B A. k e. I ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) e. _V ) | 
						
							| 114 | 29 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> I e. _V ) | 
						
							| 115 | 31 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> M e. B ) | 
						
							| 116 |  | simpr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> n e. I ) | 
						
							| 117 | 106 113 114 115 116 | fvmpocurryd |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> ( ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ` n ) = ( M ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) n ) ) | 
						
							| 118 |  | df-decpmat |  |-  decompPMat = ( x e. _V , k e. NN0 |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) | 
						
							| 119 | 118 | reseq1i |  |-  ( decompPMat |` ( B X. I ) ) = ( ( x e. _V , k e. NN0 |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) |` ( B X. I ) ) | 
						
							| 120 |  | ssv |  |-  B C_ _V | 
						
							| 121 | 120 | a1i |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> B C_ _V ) | 
						
							| 122 |  | simpl |  |-  ( ( I C_ NN0 /\ I =/= (/) ) -> I C_ NN0 ) | 
						
							| 123 | 121 122 | anim12i |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( B C_ _V /\ I C_ NN0 ) ) | 
						
							| 124 | 123 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> ( B C_ _V /\ I C_ NN0 ) ) | 
						
							| 125 |  | resmpo |  |-  ( ( B C_ _V /\ I C_ NN0 ) -> ( ( x e. _V , k e. NN0 |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) |` ( B X. I ) ) = ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ) | 
						
							| 126 | 124 125 | syl |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> ( ( x e. _V , k e. NN0 |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) |` ( B X. I ) ) = ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ) | 
						
							| 127 | 119 126 | eqtr2id |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) = ( decompPMat |` ( B X. I ) ) ) | 
						
							| 128 | 127 | oveqd |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> ( M ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) n ) = ( M ( decompPMat |` ( B X. I ) ) n ) ) | 
						
							| 129 | 117 128 | eqtrd |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> ( ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ` n ) = ( M ( decompPMat |` ( B X. I ) ) n ) ) | 
						
							| 130 | 129 | adantlr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ` n ) = ( M ( decompPMat |` ( B X. I ) ) n ) ) | 
						
							| 131 | 105 130 | eqtrd |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( f ` n ) = ( M ( decompPMat |` ( B X. I ) ) n ) ) | 
						
							| 132 | 131 | fveq2d |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( T ` ( f ` n ) ) = ( T ` ( M ( decompPMat |` ( B X. I ) ) n ) ) ) | 
						
							| 133 | 30 | ad2antrr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) -> M e. B ) | 
						
							| 134 |  | ovres |  |-  ( ( M e. B /\ n e. I ) -> ( M ( decompPMat |` ( B X. I ) ) n ) = ( M decompPMat n ) ) | 
						
							| 135 | 133 134 | sylan |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( M ( decompPMat |` ( B X. I ) ) n ) = ( M decompPMat n ) ) | 
						
							| 136 | 135 | fveq2d |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( T ` ( M ( decompPMat |` ( B X. I ) ) n ) ) = ( T ` ( M decompPMat n ) ) ) | 
						
							| 137 | 132 136 | eqtrd |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( T ` ( f ` n ) ) = ( T ` ( M decompPMat n ) ) ) | 
						
							| 138 | 137 | oveq2d |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) = ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) | 
						
							| 139 | 138 | mpteq2dva |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) -> ( n e. I |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) = ( n e. I |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) | 
						
							| 140 | 139 | oveq2d |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) -> ( C gsum ( n e. I |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) = ( C gsum ( n e. I |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) ) | 
						
							| 141 | 140 | eqeq2d |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) -> ( M = ( C gsum ( n e. I |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) <-> M = ( C gsum ( n e. I |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) ) ) | 
						
							| 142 | 102 141 | rspcedv |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( M = ( C gsum ( n e. I |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) -> E. f e. ( D ^m I ) M = ( C gsum ( n e. I |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) ) ) |