| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmatcollpw.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
pmatcollpw.c |
|- C = ( N Mat P ) |
| 3 |
|
pmatcollpw.b |
|- B = ( Base ` C ) |
| 4 |
|
pmatcollpw.m |
|- .* = ( .s ` C ) |
| 5 |
|
pmatcollpw.e |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
| 6 |
|
pmatcollpw.x |
|- X = ( var1 ` R ) |
| 7 |
|
pmatcollpw.t |
|- T = ( N matToPolyMat R ) |
| 8 |
|
pmatcollpw3.a |
|- A = ( N Mat R ) |
| 9 |
|
pmatcollpw3.d |
|- D = ( Base ` A ) |
| 10 |
|
dmeq |
|- ( x = y -> dom x = dom y ) |
| 11 |
10
|
dmeqd |
|- ( x = y -> dom dom x = dom dom y ) |
| 12 |
|
oveq |
|- ( x = y -> ( i x j ) = ( i y j ) ) |
| 13 |
12
|
fveq2d |
|- ( x = y -> ( coe1 ` ( i x j ) ) = ( coe1 ` ( i y j ) ) ) |
| 14 |
13
|
fveq1d |
|- ( x = y -> ( ( coe1 ` ( i x j ) ) ` k ) = ( ( coe1 ` ( i y j ) ) ` k ) ) |
| 15 |
11 11 14
|
mpoeq123dv |
|- ( x = y -> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) ) |
| 16 |
|
fveq2 |
|- ( k = l -> ( ( coe1 ` ( i y j ) ) ` k ) = ( ( coe1 ` ( i y j ) ) ` l ) ) |
| 17 |
16
|
mpoeq3dv |
|- ( k = l -> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) = ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) ) |
| 18 |
15 17
|
cbvmpov |
|- ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) = ( y e. B , l e. I |-> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) ) |
| 19 |
|
dmexg |
|- ( y e. B -> dom y e. _V ) |
| 20 |
19
|
dmexd |
|- ( y e. B -> dom dom y e. _V ) |
| 21 |
20 20
|
jca |
|- ( y e. B -> ( dom dom y e. _V /\ dom dom y e. _V ) ) |
| 22 |
21
|
ad2antrl |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ ( y e. B /\ l e. I ) ) -> ( dom dom y e. _V /\ dom dom y e. _V ) ) |
| 23 |
|
mpoexga |
|- ( ( dom dom y e. _V /\ dom dom y e. _V ) -> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) e. _V ) |
| 24 |
22 23
|
syl |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ ( y e. B /\ l e. I ) ) -> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) e. _V ) |
| 25 |
24
|
ralrimivva |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> A. y e. B A. l e. I ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) e. _V ) |
| 26 |
|
simprr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> I =/= (/) ) |
| 27 |
|
nn0ex |
|- NN0 e. _V |
| 28 |
27
|
ssex |
|- ( I C_ NN0 -> I e. _V ) |
| 29 |
28
|
ad2antrl |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> I e. _V ) |
| 30 |
|
simp3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> M e. B ) |
| 31 |
30
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> M e. B ) |
| 32 |
18 25 26 29 31
|
mpocurryvald |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) = ( l e. I |-> [_ M / y ]_ ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) ) ) |
| 33 |
|
fveq2 |
|- ( l = k -> ( ( coe1 ` ( i y j ) ) ` l ) = ( ( coe1 ` ( i y j ) ) ` k ) ) |
| 34 |
33
|
mpoeq3dv |
|- ( l = k -> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) = ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) ) |
| 35 |
34
|
csbeq2dv |
|- ( l = k -> [_ M / y ]_ ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) = [_ M / y ]_ ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) ) |
| 36 |
|
eqcom |
|- ( x = y <-> y = x ) |
| 37 |
|
eqcom |
|- ( ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) <-> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) = ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) |
| 38 |
15 36 37
|
3imtr3i |
|- ( y = x -> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) = ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) |
| 39 |
38
|
cbvcsbv |
|- [_ M / y ]_ ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) = [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) |
| 40 |
35 39
|
eqtrdi |
|- ( l = k -> [_ M / y ]_ ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) = [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) |
| 41 |
40
|
cbvmptv |
|- ( l e. I |-> [_ M / y ]_ ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) ) = ( k e. I |-> [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) |
| 42 |
32 41
|
eqtrdi |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) = ( k e. I |-> [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ) |
| 43 |
|
dmeq |
|- ( x = M -> dom x = dom M ) |
| 44 |
43
|
dmeqd |
|- ( x = M -> dom dom x = dom dom M ) |
| 45 |
|
oveq |
|- ( x = M -> ( i x j ) = ( i M j ) ) |
| 46 |
45
|
fveq2d |
|- ( x = M -> ( coe1 ` ( i x j ) ) = ( coe1 ` ( i M j ) ) ) |
| 47 |
46
|
fveq1d |
|- ( x = M -> ( ( coe1 ` ( i x j ) ) ` k ) = ( ( coe1 ` ( i M j ) ) ` k ) ) |
| 48 |
44 44 47
|
mpoeq123dv |
|- ( x = M -> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` k ) ) ) |
| 49 |
48
|
adantl |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ x = M ) -> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` k ) ) ) |
| 50 |
30 49
|
csbied |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` k ) ) ) |
| 51 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 52 |
2 51 3
|
matbas2i |
|- ( M e. B -> M e. ( ( Base ` P ) ^m ( N X. N ) ) ) |
| 53 |
|
elmapi |
|- ( M e. ( ( Base ` P ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` P ) ) |
| 54 |
|
fdm |
|- ( M : ( N X. N ) --> ( Base ` P ) -> dom M = ( N X. N ) ) |
| 55 |
54
|
dmeqd |
|- ( M : ( N X. N ) --> ( Base ` P ) -> dom dom M = dom ( N X. N ) ) |
| 56 |
|
dmxpid |
|- dom ( N X. N ) = N |
| 57 |
55 56
|
eqtr2di |
|- ( M : ( N X. N ) --> ( Base ` P ) -> N = dom dom M ) |
| 58 |
52 53 57
|
3syl |
|- ( M e. B -> N = dom dom M ) |
| 59 |
58
|
3ad2ant3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> N = dom dom M ) |
| 60 |
59
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> N = dom dom M ) |
| 61 |
|
simpr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> m = M ) |
| 62 |
61
|
oveqd |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( i m j ) = ( i M j ) ) |
| 63 |
62
|
fveq2d |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( coe1 ` ( i m j ) ) = ( coe1 ` ( i M j ) ) ) |
| 64 |
63
|
fveq1d |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( ( coe1 ` ( i m j ) ) ` k ) = ( ( coe1 ` ( i M j ) ) ` k ) ) |
| 65 |
60 60 64
|
mpoeq123dv |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` k ) ) ) |
| 66 |
30 65
|
csbied |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` k ) ) ) |
| 67 |
50 66
|
eqtr4d |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) |
| 68 |
67
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) |
| 69 |
68
|
mpteq2dv |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( k e. I |-> [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) = ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) ) |
| 70 |
42 69
|
eqtrd |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) = ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) ) |
| 71 |
|
oveq |
|- ( m = M -> ( i m j ) = ( i M j ) ) |
| 72 |
71
|
adantl |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( i m j ) = ( i M j ) ) |
| 73 |
72
|
fveq2d |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( coe1 ` ( i m j ) ) = ( coe1 ` ( i M j ) ) ) |
| 74 |
73
|
fveq1d |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( ( coe1 ` ( i m j ) ) ` k ) = ( ( coe1 ` ( i M j ) ) ` k ) ) |
| 75 |
74
|
mpoeq3dv |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` k ) ) ) |
| 76 |
30 75
|
csbied |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` k ) ) ) |
| 77 |
76
|
ad2antrr |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` k ) ) ) |
| 78 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 79 |
|
simpll1 |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> N e. Fin ) |
| 80 |
|
simpll2 |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> R e. CRing ) |
| 81 |
|
simp2 |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) /\ i e. N /\ j e. N ) -> i e. N ) |
| 82 |
|
simp3 |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) /\ i e. N /\ j e. N ) -> j e. N ) |
| 83 |
31
|
adantr |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> M e. B ) |
| 84 |
83
|
3ad2ant1 |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) /\ i e. N /\ j e. N ) -> M e. B ) |
| 85 |
2 51 3 81 82 84
|
matecld |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) /\ i e. N /\ j e. N ) -> ( i M j ) e. ( Base ` P ) ) |
| 86 |
|
ssel |
|- ( I C_ NN0 -> ( k e. I -> k e. NN0 ) ) |
| 87 |
86
|
ad2antrl |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( k e. I -> k e. NN0 ) ) |
| 88 |
87
|
imp |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> k e. NN0 ) |
| 89 |
88
|
3ad2ant1 |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) /\ i e. N /\ j e. N ) -> k e. NN0 ) |
| 90 |
|
eqid |
|- ( coe1 ` ( i M j ) ) = ( coe1 ` ( i M j ) ) |
| 91 |
90 51 1 78
|
coe1fvalcl |
|- ( ( ( i M j ) e. ( Base ` P ) /\ k e. NN0 ) -> ( ( coe1 ` ( i M j ) ) ` k ) e. ( Base ` R ) ) |
| 92 |
85 89 91
|
syl2anc |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) /\ i e. N /\ j e. N ) -> ( ( coe1 ` ( i M j ) ) ` k ) e. ( Base ` R ) ) |
| 93 |
8 78 9 79 80 92
|
matbas2d |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` k ) ) e. D ) |
| 94 |
77 93
|
eqeltrd |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) e. D ) |
| 95 |
94
|
fmpttd |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) : I --> D ) |
| 96 |
9
|
fvexi |
|- D e. _V |
| 97 |
96
|
a1i |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> D e. _V ) |
| 98 |
28
|
adantr |
|- ( ( I C_ NN0 /\ I =/= (/) ) -> I e. _V ) |
| 99 |
|
elmapg |
|- ( ( D e. _V /\ I e. _V ) -> ( ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) e. ( D ^m I ) <-> ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) : I --> D ) ) |
| 100 |
97 98 99
|
syl2an |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) e. ( D ^m I ) <-> ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) : I --> D ) ) |
| 101 |
95 100
|
mpbird |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) e. ( D ^m I ) ) |
| 102 |
70 101
|
eqeltrd |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) e. ( D ^m I ) ) |
| 103 |
|
fveq1 |
|- ( f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) -> ( f ` n ) = ( ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ` n ) ) |
| 104 |
103
|
adantl |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) -> ( f ` n ) = ( ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ` n ) ) |
| 105 |
104
|
adantr |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( f ` n ) = ( ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ` n ) ) |
| 106 |
|
eqid |
|- ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) = ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) |
| 107 |
|
dmexg |
|- ( x e. B -> dom x e. _V ) |
| 108 |
107
|
dmexd |
|- ( x e. B -> dom dom x e. _V ) |
| 109 |
108 108
|
jca |
|- ( x e. B -> ( dom dom x e. _V /\ dom dom x e. _V ) ) |
| 110 |
109
|
ad2antrl |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) /\ ( x e. B /\ k e. I ) ) -> ( dom dom x e. _V /\ dom dom x e. _V ) ) |
| 111 |
|
mpoexga |
|- ( ( dom dom x e. _V /\ dom dom x e. _V ) -> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) e. _V ) |
| 112 |
110 111
|
syl |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) /\ ( x e. B /\ k e. I ) ) -> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) e. _V ) |
| 113 |
112
|
ralrimivva |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> A. x e. B A. k e. I ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) e. _V ) |
| 114 |
29
|
adantr |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> I e. _V ) |
| 115 |
31
|
adantr |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> M e. B ) |
| 116 |
|
simpr |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> n e. I ) |
| 117 |
106 113 114 115 116
|
fvmpocurryd |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> ( ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ` n ) = ( M ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) n ) ) |
| 118 |
|
df-decpmat |
|- decompPMat = ( x e. _V , k e. NN0 |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) |
| 119 |
118
|
reseq1i |
|- ( decompPMat |` ( B X. I ) ) = ( ( x e. _V , k e. NN0 |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) |` ( B X. I ) ) |
| 120 |
|
ssv |
|- B C_ _V |
| 121 |
120
|
a1i |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> B C_ _V ) |
| 122 |
|
simpl |
|- ( ( I C_ NN0 /\ I =/= (/) ) -> I C_ NN0 ) |
| 123 |
121 122
|
anim12i |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( B C_ _V /\ I C_ NN0 ) ) |
| 124 |
123
|
adantr |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> ( B C_ _V /\ I C_ NN0 ) ) |
| 125 |
|
resmpo |
|- ( ( B C_ _V /\ I C_ NN0 ) -> ( ( x e. _V , k e. NN0 |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) |` ( B X. I ) ) = ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ) |
| 126 |
124 125
|
syl |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> ( ( x e. _V , k e. NN0 |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) |` ( B X. I ) ) = ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ) |
| 127 |
119 126
|
eqtr2id |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) = ( decompPMat |` ( B X. I ) ) ) |
| 128 |
127
|
oveqd |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> ( M ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) n ) = ( M ( decompPMat |` ( B X. I ) ) n ) ) |
| 129 |
117 128
|
eqtrd |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> ( ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ` n ) = ( M ( decompPMat |` ( B X. I ) ) n ) ) |
| 130 |
129
|
adantlr |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ` n ) = ( M ( decompPMat |` ( B X. I ) ) n ) ) |
| 131 |
105 130
|
eqtrd |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( f ` n ) = ( M ( decompPMat |` ( B X. I ) ) n ) ) |
| 132 |
131
|
fveq2d |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( T ` ( f ` n ) ) = ( T ` ( M ( decompPMat |` ( B X. I ) ) n ) ) ) |
| 133 |
30
|
ad2antrr |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) -> M e. B ) |
| 134 |
|
ovres |
|- ( ( M e. B /\ n e. I ) -> ( M ( decompPMat |` ( B X. I ) ) n ) = ( M decompPMat n ) ) |
| 135 |
133 134
|
sylan |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( M ( decompPMat |` ( B X. I ) ) n ) = ( M decompPMat n ) ) |
| 136 |
135
|
fveq2d |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( T ` ( M ( decompPMat |` ( B X. I ) ) n ) ) = ( T ` ( M decompPMat n ) ) ) |
| 137 |
132 136
|
eqtrd |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( T ` ( f ` n ) ) = ( T ` ( M decompPMat n ) ) ) |
| 138 |
137
|
oveq2d |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) = ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) |
| 139 |
138
|
mpteq2dva |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) -> ( n e. I |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) = ( n e. I |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) |
| 140 |
139
|
oveq2d |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) -> ( C gsum ( n e. I |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) = ( C gsum ( n e. I |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) ) |
| 141 |
140
|
eqeq2d |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) -> ( M = ( C gsum ( n e. I |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) <-> M = ( C gsum ( n e. I |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) ) ) |
| 142 |
102 141
|
rspcedv |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( M = ( C gsum ( n e. I |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) -> E. f e. ( D ^m I ) M = ( C gsum ( n e. I |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) ) ) |