Step |
Hyp |
Ref |
Expression |
1 |
|
fvmpocurryd.f |
|- F = ( x e. X , y e. Y |-> C ) |
2 |
|
fvmpocurryd.c |
|- ( ph -> A. x e. X A. y e. Y C e. V ) |
3 |
|
fvmpocurryd.y |
|- ( ph -> Y e. W ) |
4 |
|
fvmpocurryd.a |
|- ( ph -> A e. X ) |
5 |
|
fvmpocurryd.b |
|- ( ph -> B e. Y ) |
6 |
|
csbcom |
|- [_ B / b ]_ [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C = [_ A / a ]_ [_ B / b ]_ [_ b / y ]_ [_ a / x ]_ C |
7 |
|
csbcow |
|- [_ B / b ]_ [_ b / y ]_ [_ a / x ]_ C = [_ B / y ]_ [_ a / x ]_ C |
8 |
7
|
csbeq2i |
|- [_ A / a ]_ [_ B / b ]_ [_ b / y ]_ [_ a / x ]_ C = [_ A / a ]_ [_ B / y ]_ [_ a / x ]_ C |
9 |
|
csbcom |
|- [_ A / a ]_ [_ B / y ]_ [_ a / x ]_ C = [_ B / y ]_ [_ A / a ]_ [_ a / x ]_ C |
10 |
|
csbcow |
|- [_ A / a ]_ [_ a / x ]_ C = [_ A / x ]_ C |
11 |
10
|
csbeq2i |
|- [_ B / y ]_ [_ A / a ]_ [_ a / x ]_ C = [_ B / y ]_ [_ A / x ]_ C |
12 |
9 11
|
eqtri |
|- [_ A / a ]_ [_ B / y ]_ [_ a / x ]_ C = [_ B / y ]_ [_ A / x ]_ C |
13 |
6 8 12
|
3eqtri |
|- [_ B / b ]_ [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C = [_ B / y ]_ [_ A / x ]_ C |
14 |
|
nfcsb1v |
|- F/_ x [_ A / x ]_ C |
15 |
14
|
nfel1 |
|- F/ x [_ A / x ]_ C e. V |
16 |
|
nfcsb1v |
|- F/_ y [_ B / y ]_ [_ A / x ]_ C |
17 |
16
|
nfel1 |
|- F/ y [_ B / y ]_ [_ A / x ]_ C e. V |
18 |
|
csbeq1a |
|- ( x = A -> C = [_ A / x ]_ C ) |
19 |
18
|
eleq1d |
|- ( x = A -> ( C e. V <-> [_ A / x ]_ C e. V ) ) |
20 |
|
csbeq1a |
|- ( y = B -> [_ A / x ]_ C = [_ B / y ]_ [_ A / x ]_ C ) |
21 |
20
|
eleq1d |
|- ( y = B -> ( [_ A / x ]_ C e. V <-> [_ B / y ]_ [_ A / x ]_ C e. V ) ) |
22 |
15 17 19 21
|
rspc2 |
|- ( ( A e. X /\ B e. Y ) -> ( A. x e. X A. y e. Y C e. V -> [_ B / y ]_ [_ A / x ]_ C e. V ) ) |
23 |
22
|
imp |
|- ( ( ( A e. X /\ B e. Y ) /\ A. x e. X A. y e. Y C e. V ) -> [_ B / y ]_ [_ A / x ]_ C e. V ) |
24 |
4 5 2 23
|
syl21anc |
|- ( ph -> [_ B / y ]_ [_ A / x ]_ C e. V ) |
25 |
13 24
|
eqeltrid |
|- ( ph -> [_ B / b ]_ [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C e. V ) |
26 |
|
eqid |
|- ( b e. Y |-> [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C ) = ( b e. Y |-> [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C ) |
27 |
26
|
fvmpts |
|- ( ( B e. Y /\ [_ B / b ]_ [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C e. V ) -> ( ( b e. Y |-> [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C ) ` B ) = [_ B / b ]_ [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C ) |
28 |
5 25 27
|
syl2anc |
|- ( ph -> ( ( b e. Y |-> [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C ) ` B ) = [_ B / b ]_ [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C ) |
29 |
|
nfcv |
|- F/_ a C |
30 |
|
nfcv |
|- F/_ b C |
31 |
|
nfcv |
|- F/_ x b |
32 |
|
nfcsb1v |
|- F/_ x [_ a / x ]_ C |
33 |
31 32
|
nfcsbw |
|- F/_ x [_ b / y ]_ [_ a / x ]_ C |
34 |
|
nfcsb1v |
|- F/_ y [_ b / y ]_ [_ a / x ]_ C |
35 |
|
csbeq1a |
|- ( x = a -> C = [_ a / x ]_ C ) |
36 |
|
csbeq1a |
|- ( y = b -> [_ a / x ]_ C = [_ b / y ]_ [_ a / x ]_ C ) |
37 |
35 36
|
sylan9eq |
|- ( ( x = a /\ y = b ) -> C = [_ b / y ]_ [_ a / x ]_ C ) |
38 |
29 30 33 34 37
|
cbvmpo |
|- ( x e. X , y e. Y |-> C ) = ( a e. X , b e. Y |-> [_ b / y ]_ [_ a / x ]_ C ) |
39 |
1 38
|
eqtri |
|- F = ( a e. X , b e. Y |-> [_ b / y ]_ [_ a / x ]_ C ) |
40 |
32
|
nfel1 |
|- F/ x [_ a / x ]_ C e. V |
41 |
34
|
nfel1 |
|- F/ y [_ b / y ]_ [_ a / x ]_ C e. V |
42 |
35
|
eleq1d |
|- ( x = a -> ( C e. V <-> [_ a / x ]_ C e. V ) ) |
43 |
36
|
eleq1d |
|- ( y = b -> ( [_ a / x ]_ C e. V <-> [_ b / y ]_ [_ a / x ]_ C e. V ) ) |
44 |
40 41 42 43
|
rspc2 |
|- ( ( a e. X /\ b e. Y ) -> ( A. x e. X A. y e. Y C e. V -> [_ b / y ]_ [_ a / x ]_ C e. V ) ) |
45 |
2 44
|
mpan9 |
|- ( ( ph /\ ( a e. X /\ b e. Y ) ) -> [_ b / y ]_ [_ a / x ]_ C e. V ) |
46 |
45
|
ralrimivva |
|- ( ph -> A. a e. X A. b e. Y [_ b / y ]_ [_ a / x ]_ C e. V ) |
47 |
5
|
ne0d |
|- ( ph -> Y =/= (/) ) |
48 |
39 46 47 3 4
|
mpocurryvald |
|- ( ph -> ( curry F ` A ) = ( b e. Y |-> [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C ) ) |
49 |
48
|
fveq1d |
|- ( ph -> ( ( curry F ` A ) ` B ) = ( ( b e. Y |-> [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C ) ` B ) ) |
50 |
1
|
a1i |
|- ( ph -> F = ( x e. X , y e. Y |-> C ) ) |
51 |
|
csbcow |
|- [_ y / b ]_ [_ b / y ]_ [_ a / x ]_ C = [_ y / y ]_ [_ a / x ]_ C |
52 |
|
csbid |
|- [_ y / y ]_ [_ a / x ]_ C = [_ a / x ]_ C |
53 |
51 52
|
eqtr2i |
|- [_ a / x ]_ C = [_ y / b ]_ [_ b / y ]_ [_ a / x ]_ C |
54 |
53
|
a1i |
|- ( ph -> [_ a / x ]_ C = [_ y / b ]_ [_ b / y ]_ [_ a / x ]_ C ) |
55 |
54
|
csbeq2dv |
|- ( ph -> [_ x / a ]_ [_ a / x ]_ C = [_ x / a ]_ [_ y / b ]_ [_ b / y ]_ [_ a / x ]_ C ) |
56 |
|
csbcow |
|- [_ x / a ]_ [_ a / x ]_ C = [_ x / x ]_ C |
57 |
|
csbid |
|- [_ x / x ]_ C = C |
58 |
56 57
|
eqtri |
|- [_ x / a ]_ [_ a / x ]_ C = C |
59 |
|
csbcom |
|- [_ x / a ]_ [_ y / b ]_ [_ b / y ]_ [_ a / x ]_ C = [_ y / b ]_ [_ x / a ]_ [_ b / y ]_ [_ a / x ]_ C |
60 |
55 58 59
|
3eqtr3g |
|- ( ph -> C = [_ y / b ]_ [_ x / a ]_ [_ b / y ]_ [_ a / x ]_ C ) |
61 |
|
csbeq1 |
|- ( x = A -> [_ x / a ]_ [_ b / y ]_ [_ a / x ]_ C = [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C ) |
62 |
61
|
adantr |
|- ( ( x = A /\ y = B ) -> [_ x / a ]_ [_ b / y ]_ [_ a / x ]_ C = [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C ) |
63 |
62
|
csbeq2dv |
|- ( ( x = A /\ y = B ) -> [_ y / b ]_ [_ x / a ]_ [_ b / y ]_ [_ a / x ]_ C = [_ y / b ]_ [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C ) |
64 |
|
csbeq1 |
|- ( y = B -> [_ y / b ]_ [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C = [_ B / b ]_ [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C ) |
65 |
64
|
adantl |
|- ( ( x = A /\ y = B ) -> [_ y / b ]_ [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C = [_ B / b ]_ [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C ) |
66 |
63 65
|
eqtrd |
|- ( ( x = A /\ y = B ) -> [_ y / b ]_ [_ x / a ]_ [_ b / y ]_ [_ a / x ]_ C = [_ B / b ]_ [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C ) |
67 |
60 66
|
sylan9eq |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> C = [_ B / b ]_ [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C ) |
68 |
|
eqidd |
|- ( ( ph /\ x = A ) -> Y = Y ) |
69 |
|
nfv |
|- F/ x ph |
70 |
|
nfv |
|- F/ y ph |
71 |
|
nfcv |
|- F/_ y A |
72 |
|
nfcv |
|- F/_ x B |
73 |
|
nfcv |
|- F/_ x A |
74 |
73 33
|
nfcsbw |
|- F/_ x [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C |
75 |
72 74
|
nfcsbw |
|- F/_ x [_ B / b ]_ [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C |
76 |
13 16
|
nfcxfr |
|- F/_ y [_ B / b ]_ [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C |
77 |
50 67 68 4 5 25 69 70 71 72 75 76
|
ovmpodxf |
|- ( ph -> ( A F B ) = [_ B / b ]_ [_ A / a ]_ [_ b / y ]_ [_ a / x ]_ C ) |
78 |
28 49 77
|
3eqtr4d |
|- ( ph -> ( ( curry F ` A ) ` B ) = ( A F B ) ) |