| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvmpocurryd.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) |
| 2 |
|
fvmpocurryd.c |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐶 ∈ 𝑉 ) |
| 3 |
|
fvmpocurryd.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑊 ) |
| 4 |
|
fvmpocurryd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 5 |
|
fvmpocurryd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) |
| 6 |
|
csbcom |
⊢ ⦋ 𝐵 / 𝑏 ⦌ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝐵 / 𝑏 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
| 7 |
|
csbcow |
⊢ ⦋ 𝐵 / 𝑏 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
| 8 |
7
|
csbeq2i |
⊢ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝐵 / 𝑏 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
| 9 |
|
csbcom |
⊢ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
| 10 |
|
csbcow |
⊢ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 |
| 11 |
10
|
csbeq2i |
⊢ ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 |
| 12 |
9 11
|
eqtri |
⊢ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 |
| 13 |
6 8 12
|
3eqtri |
⊢ ⦋ 𝐵 / 𝑏 ⦌ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 |
| 14 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 |
| 15 |
14
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∈ 𝑉 |
| 16 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 |
| 17 |
16
|
nfel1 |
⊢ Ⅎ 𝑦 ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∈ 𝑉 |
| 18 |
|
csbeq1a |
⊢ ( 𝑥 = 𝐴 → 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| 19 |
18
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( 𝐶 ∈ 𝑉 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∈ 𝑉 ) ) |
| 20 |
|
csbeq1a |
⊢ ( 𝑦 = 𝐵 → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| 21 |
20
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∈ 𝑉 ↔ ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∈ 𝑉 ) ) |
| 22 |
15 17 19 21
|
rspc2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐶 ∈ 𝑉 → ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∈ 𝑉 ) ) |
| 23 |
22
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐶 ∈ 𝑉 ) → ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∈ 𝑉 ) |
| 24 |
4 5 2 23
|
syl21anc |
⊢ ( 𝜑 → ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∈ 𝑉 ) |
| 25 |
13 24
|
eqeltrid |
⊢ ( 𝜑 → ⦋ 𝐵 / 𝑏 ⦌ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ 𝑉 ) |
| 26 |
|
eqid |
⊢ ( 𝑏 ∈ 𝑌 ↦ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) = ( 𝑏 ∈ 𝑌 ↦ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 27 |
26
|
fvmpts |
⊢ ( ( 𝐵 ∈ 𝑌 ∧ ⦋ 𝐵 / 𝑏 ⦌ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ 𝑉 ) → ( ( 𝑏 ∈ 𝑌 ↦ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) ‘ 𝐵 ) = ⦋ 𝐵 / 𝑏 ⦌ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 28 |
5 25 27
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝑌 ↦ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) ‘ 𝐵 ) = ⦋ 𝐵 / 𝑏 ⦌ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 29 |
|
nfcv |
⊢ Ⅎ 𝑎 𝐶 |
| 30 |
|
nfcv |
⊢ Ⅎ 𝑏 𝐶 |
| 31 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑏 |
| 32 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
| 33 |
31 32
|
nfcsbw |
⊢ Ⅎ 𝑥 ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
| 34 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
| 35 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑎 → 𝐶 = ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 36 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑏 → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 37 |
35 36
|
sylan9eq |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝐶 = ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 38 |
29 30 33 34 37
|
cbvmpo |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) = ( 𝑎 ∈ 𝑋 , 𝑏 ∈ 𝑌 ↦ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 39 |
1 38
|
eqtri |
⊢ 𝐹 = ( 𝑎 ∈ 𝑋 , 𝑏 ∈ 𝑌 ↦ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 40 |
32
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ 𝑉 |
| 41 |
34
|
nfel1 |
⊢ Ⅎ 𝑦 ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ 𝑉 |
| 42 |
35
|
eleq1d |
⊢ ( 𝑥 = 𝑎 → ( 𝐶 ∈ 𝑉 ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ 𝑉 ) ) |
| 43 |
36
|
eleq1d |
⊢ ( 𝑦 = 𝑏 → ( ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ 𝑉 ↔ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ 𝑉 ) ) |
| 44 |
40 41 42 43
|
rspc2 |
⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑌 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐶 ∈ 𝑉 → ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ 𝑉 ) ) |
| 45 |
2 44
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑌 ) ) → ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ 𝑉 ) |
| 46 |
45
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑌 ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ 𝑉 ) |
| 47 |
5
|
ne0d |
⊢ ( 𝜑 → 𝑌 ≠ ∅ ) |
| 48 |
39 46 47 3 4
|
mpocurryvald |
⊢ ( 𝜑 → ( curry 𝐹 ‘ 𝐴 ) = ( 𝑏 ∈ 𝑌 ↦ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) ) |
| 49 |
48
|
fveq1d |
⊢ ( 𝜑 → ( ( curry 𝐹 ‘ 𝐴 ) ‘ 𝐵 ) = ( ( 𝑏 ∈ 𝑌 ↦ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) ‘ 𝐵 ) ) |
| 50 |
1
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) |
| 51 |
|
csbcow |
⊢ ⦋ 𝑦 / 𝑏 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝑦 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
| 52 |
|
csbid |
⊢ ⦋ 𝑦 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
| 53 |
51 52
|
eqtr2i |
⊢ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝑦 / 𝑏 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
| 54 |
53
|
a1i |
⊢ ( 𝜑 → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝑦 / 𝑏 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 55 |
54
|
csbeq2dv |
⊢ ( 𝜑 → ⦋ 𝑥 / 𝑎 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝑥 / 𝑎 ⦌ ⦋ 𝑦 / 𝑏 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 56 |
|
csbcow |
⊢ ⦋ 𝑥 / 𝑎 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝑥 / 𝑥 ⦌ 𝐶 |
| 57 |
|
csbid |
⊢ ⦋ 𝑥 / 𝑥 ⦌ 𝐶 = 𝐶 |
| 58 |
56 57
|
eqtri |
⊢ ⦋ 𝑥 / 𝑎 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = 𝐶 |
| 59 |
|
csbcom |
⊢ ⦋ 𝑥 / 𝑎 ⦌ ⦋ 𝑦 / 𝑏 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝑦 / 𝑏 ⦌ ⦋ 𝑥 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
| 60 |
55 58 59
|
3eqtr3g |
⊢ ( 𝜑 → 𝐶 = ⦋ 𝑦 / 𝑏 ⦌ ⦋ 𝑥 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 61 |
|
csbeq1 |
⊢ ( 𝑥 = 𝐴 → ⦋ 𝑥 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 62 |
61
|
adantr |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ⦋ 𝑥 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 63 |
62
|
csbeq2dv |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ⦋ 𝑦 / 𝑏 ⦌ ⦋ 𝑥 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝑦 / 𝑏 ⦌ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 64 |
|
csbeq1 |
⊢ ( 𝑦 = 𝐵 → ⦋ 𝑦 / 𝑏 ⦌ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝐵 / 𝑏 ⦌ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 65 |
64
|
adantl |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ⦋ 𝑦 / 𝑏 ⦌ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝐵 / 𝑏 ⦌ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 66 |
63 65
|
eqtrd |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ⦋ 𝑦 / 𝑏 ⦌ ⦋ 𝑥 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝐵 / 𝑏 ⦌ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 67 |
60 66
|
sylan9eq |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝐶 = ⦋ 𝐵 / 𝑏 ⦌ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 68 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝑌 = 𝑌 ) |
| 69 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 70 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
| 71 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
| 72 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
| 73 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 74 |
73 33
|
nfcsbw |
⊢ Ⅎ 𝑥 ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
| 75 |
72 74
|
nfcsbw |
⊢ Ⅎ 𝑥 ⦋ 𝐵 / 𝑏 ⦌ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
| 76 |
13 16
|
nfcxfr |
⊢ Ⅎ 𝑦 ⦋ 𝐵 / 𝑏 ⦌ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
| 77 |
50 67 68 4 5 25 69 70 71 72 75 76
|
ovmpodxf |
⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) = ⦋ 𝐵 / 𝑏 ⦌ ⦋ 𝐴 / 𝑎 ⦌ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 78 |
28 49 77
|
3eqtr4d |
⊢ ( 𝜑 → ( ( curry 𝐹 ‘ 𝐴 ) ‘ 𝐵 ) = ( 𝐴 𝐹 𝐵 ) ) |