Description: Restricted specialization with two quantifiers, using implicit substitution. (Contributed by NM, 9-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspc2.1 | |- F/ x ch |
|
| rspc2.2 | |- F/ y ps |
||
| rspc2.3 | |- ( x = A -> ( ph <-> ch ) ) |
||
| rspc2.4 | |- ( y = B -> ( ch <-> ps ) ) |
||
| Assertion | rspc2 | |- ( ( A e. C /\ B e. D ) -> ( A. x e. C A. y e. D ph -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2.1 | |- F/ x ch |
|
| 2 | rspc2.2 | |- F/ y ps |
|
| 3 | rspc2.3 | |- ( x = A -> ( ph <-> ch ) ) |
|
| 4 | rspc2.4 | |- ( y = B -> ( ch <-> ps ) ) |
|
| 5 | nfcv | |- F/_ x D |
|
| 6 | 5 1 | nfralw | |- F/ x A. y e. D ch |
| 7 | 3 | ralbidv | |- ( x = A -> ( A. y e. D ph <-> A. y e. D ch ) ) |
| 8 | 6 7 | rspc | |- ( A e. C -> ( A. x e. C A. y e. D ph -> A. y e. D ch ) ) |
| 9 | 2 4 | rspc | |- ( B e. D -> ( A. y e. D ch -> ps ) ) |
| 10 | 8 9 | sylan9 | |- ( ( A e. C /\ B e. D ) -> ( A. x e. C A. y e. D ph -> ps ) ) |