Metamath Proof Explorer


Theorem rspc2

Description: Restricted specialization with two quantifiers, using implicit substitution. (Contributed by NM, 9-Nov-2012)

Ref Expression
Hypotheses rspc2.1 xχ
rspc2.2 yψ
rspc2.3 x=Aφχ
rspc2.4 y=Bχψ
Assertion rspc2 ACBDxCyDφψ

Proof

Step Hyp Ref Expression
1 rspc2.1 xχ
2 rspc2.2 yψ
3 rspc2.3 x=Aφχ
4 rspc2.4 y=Bχψ
5 nfcv _xD
6 5 1 nfralw xyDχ
7 3 ralbidv x=AyDφyDχ
8 6 7 rspc ACxCyDφyDχ
9 2 4 rspc BDyDχψ
10 8 9 sylan9 ACBDxCyDφψ