| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pmatcollpw.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pmatcollpw.b |  |-  B = ( Base ` C ) | 
						
							| 4 |  | pmatcollpw.m |  |-  .* = ( .s ` C ) | 
						
							| 5 |  | pmatcollpw.e |  |-  .^ = ( .g ` ( mulGrp ` P ) ) | 
						
							| 6 |  | pmatcollpw.x |  |-  X = ( var1 ` R ) | 
						
							| 7 |  | pmatcollpw.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 8 |  | pmatcollpw3.a |  |-  A = ( N Mat R ) | 
						
							| 9 |  | pmatcollpw3.d |  |-  D = ( Base ` A ) | 
						
							| 10 | 1 2 3 4 5 6 7 | pmatcollpw |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> M = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) ) | 
						
							| 11 |  | ssid |  |-  NN0 C_ NN0 | 
						
							| 12 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 13 | 12 | ne0ii |  |-  NN0 =/= (/) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 | pmatcollpw3lem |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( NN0 C_ NN0 /\ NN0 =/= (/) ) ) -> ( M = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) -> E. f e. ( D ^m NN0 ) M = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) ) ) | 
						
							| 15 | 11 13 14 | mpanr12 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( M = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) -> E. f e. ( D ^m NN0 ) M = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) ) ) | 
						
							| 16 | 10 15 | mpd |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. f e. ( D ^m NN0 ) M = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) ) |