| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pmatcollpw.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pmatcollpw.b |  |-  B = ( Base ` C ) | 
						
							| 4 |  | pmatcollpw.m |  |-  .* = ( .s ` C ) | 
						
							| 5 |  | pmatcollpw.e |  |-  .^ = ( .g ` ( mulGrp ` P ) ) | 
						
							| 6 |  | pmatcollpw.x |  |-  X = ( var1 ` R ) | 
						
							| 7 |  | pmatcollpw.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 8 |  | pmatcollpw3.a |  |-  A = ( N Mat R ) | 
						
							| 9 |  | pmatcollpw3.d |  |-  D = ( Base ` A ) | 
						
							| 10 | 1 2 3 4 5 6 7 | pmatcollpwfi |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN0 M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) ) | 
						
							| 11 |  | elnn0uz |  |-  ( s e. NN0 <-> s e. ( ZZ>= ` 0 ) ) | 
						
							| 12 |  | fzn0 |  |-  ( ( 0 ... s ) =/= (/) <-> s e. ( ZZ>= ` 0 ) ) | 
						
							| 13 | 11 12 | sylbb2 |  |-  ( s e. NN0 -> ( 0 ... s ) =/= (/) ) | 
						
							| 14 |  | fz0ssnn0 |  |-  ( 0 ... s ) C_ NN0 | 
						
							| 15 | 13 14 | jctil |  |-  ( s e. NN0 -> ( ( 0 ... s ) C_ NN0 /\ ( 0 ... s ) =/= (/) ) ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 | pmatcollpw3lem |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( ( 0 ... s ) C_ NN0 /\ ( 0 ... s ) =/= (/) ) ) -> ( M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) -> E. f e. ( D ^m ( 0 ... s ) ) M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) ) ) | 
						
							| 17 | 15 16 | sylan2 |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN0 ) -> ( M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) -> E. f e. ( D ^m ( 0 ... s ) ) M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) ) ) | 
						
							| 18 | 17 | reximdva |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( E. s e. NN0 M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) -> E. s e. NN0 E. f e. ( D ^m ( 0 ... s ) ) M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) ) ) | 
						
							| 19 | 10 18 | mpd |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN0 E. f e. ( D ^m ( 0 ... s ) ) M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) ) |