| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pmatcollpw.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pmatcollpw.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pmatcollpw.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 5 |  | pmatcollpw.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | pmatcollpw.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | pmatcollpw.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 8 |  | pmatcollpw3.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 9 |  | pmatcollpw3.d | ⊢ 𝐷  =  ( Base ‘ 𝐴 ) | 
						
							| 10 | 1 2 3 4 5 6 7 | pmatcollpwfi | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) ) | 
						
							| 11 |  | elnn0uz | ⊢ ( 𝑠  ∈  ℕ0  ↔  𝑠  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 12 |  | fzn0 | ⊢ ( ( 0 ... 𝑠 )  ≠  ∅  ↔  𝑠  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 13 | 11 12 | sylbb2 | ⊢ ( 𝑠  ∈  ℕ0  →  ( 0 ... 𝑠 )  ≠  ∅ ) | 
						
							| 14 |  | fz0ssnn0 | ⊢ ( 0 ... 𝑠 )  ⊆  ℕ0 | 
						
							| 15 | 13 14 | jctil | ⊢ ( 𝑠  ∈  ℕ0  →  ( ( 0 ... 𝑠 )  ⊆  ℕ0  ∧  ( 0 ... 𝑠 )  ≠  ∅ ) ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 | pmatcollpw3lem | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( ( 0 ... 𝑠 )  ⊆  ℕ0  ∧  ( 0 ... 𝑠 )  ≠  ∅ ) )  →  ( 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) )  →  ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 17 | 15 16 | sylan2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  →  ( 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) )  →  ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 18 | 17 | reximdva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑠  ∈  ℕ0 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) )  →  ∃ 𝑠  ∈  ℕ0 ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 19 | 10 18 | mpd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) |