Metamath Proof Explorer


Theorem pmatcollpw3fi

Description: Write a polynomial matrix (over a commutative ring) as a finite sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 4-Nov-2019) (Revised by AV, 4-Dec-2019) (Proof shortened by AV, 8-Dec-2019)

Ref Expression
Hypotheses pmatcollpw.p P=Poly1R
pmatcollpw.c C=NMatP
pmatcollpw.b B=BaseC
pmatcollpw.m ˙=C
pmatcollpw.e ×˙=mulGrpP
pmatcollpw.x X=var1R
pmatcollpw.t T=NmatToPolyMatR
pmatcollpw3.a A=NMatR
pmatcollpw3.d D=BaseA
Assertion pmatcollpw3fi NFinRCRingMBs0fD0sM=Cn=0sn×˙X˙Tfn

Proof

Step Hyp Ref Expression
1 pmatcollpw.p P=Poly1R
2 pmatcollpw.c C=NMatP
3 pmatcollpw.b B=BaseC
4 pmatcollpw.m ˙=C
5 pmatcollpw.e ×˙=mulGrpP
6 pmatcollpw.x X=var1R
7 pmatcollpw.t T=NmatToPolyMatR
8 pmatcollpw3.a A=NMatR
9 pmatcollpw3.d D=BaseA
10 1 2 3 4 5 6 7 pmatcollpwfi NFinRCRingMBs0M=Cn=0sn×˙X˙TMdecompPMatn
11 elnn0uz s0s0
12 fzn0 0ss0
13 11 12 sylbb2 s00s
14 fz0ssnn0 0s0
15 13 14 jctil s00s00s
16 1 2 3 4 5 6 7 8 9 pmatcollpw3lem NFinRCRingMB0s00sM=Cn=0sn×˙X˙TMdecompPMatnfD0sM=Cn=0sn×˙X˙Tfn
17 15 16 sylan2 NFinRCRingMBs0M=Cn=0sn×˙X˙TMdecompPMatnfD0sM=Cn=0sn×˙X˙Tfn
18 17 reximdva NFinRCRingMBs0M=Cn=0sn×˙X˙TMdecompPMatns0fD0sM=Cn=0sn×˙X˙Tfn
19 10 18 mpd NFinRCRingMBs0fD0sM=Cn=0sn×˙X˙Tfn