Metamath Proof Explorer


Theorem pmatcollpw3fi1lem1

Description: Lemma 1 for pmatcollpw3fi1 . (Contributed by AV, 6-Nov-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pmatcollpw.p P = Poly 1 R
pmatcollpw.c C = N Mat P
pmatcollpw.b B = Base C
pmatcollpw.m ˙ = C
pmatcollpw.e × ˙ = mulGrp P
pmatcollpw.x X = var 1 R
pmatcollpw.t T = N matToPolyMat R
pmatcollpw3.a A = N Mat R
pmatcollpw3.d D = Base A
pmatcollpw3fi1lem1.0 0 ˙ = 0 A
pmatcollpw3fi1lem1.h H = l 0 1 if l = 0 G 0 0 ˙
Assertion pmatcollpw3fi1lem1 N Fin R Ring G D 0 M = C n 0 n × ˙ X ˙ T G n M = C n = 0 1 n × ˙ X ˙ T H n

Proof

Step Hyp Ref Expression
1 pmatcollpw.p P = Poly 1 R
2 pmatcollpw.c C = N Mat P
3 pmatcollpw.b B = Base C
4 pmatcollpw.m ˙ = C
5 pmatcollpw.e × ˙ = mulGrp P
6 pmatcollpw.x X = var 1 R
7 pmatcollpw.t T = N matToPolyMat R
8 pmatcollpw3.a A = N Mat R
9 pmatcollpw3.d D = Base A
10 pmatcollpw3fi1lem1.0 0 ˙ = 0 A
11 pmatcollpw3fi1lem1.h H = l 0 1 if l = 0 G 0 0 ˙
12 simpr N Fin R Ring G D 0 M = C n 0 n × ˙ X ˙ T G n M = C n 0 n × ˙ X ˙ T G n
13 1 2 pmatring N Fin R Ring C Ring
14 ringmnd C Ring C Mnd
15 13 14 syl N Fin R Ring C Mnd
16 15 adantr N Fin R Ring G D 0 C Mnd
17 ringcmn C Ring C CMnd
18 13 17 syl N Fin R Ring C CMnd
19 18 adantr N Fin R Ring G D 0 C CMnd
20 snfi 0 Fin
21 20 a1i N Fin R Ring G D 0 0 Fin
22 simplll N Fin R Ring G D 0 n 0 N Fin
23 simpllr N Fin R Ring G D 0 n 0 R Ring
24 elmapi G D 0 G : 0 D
25 24 adantl N Fin R Ring G D 0 G : 0 D
26 25 ffvelrnda N Fin R Ring G D 0 n 0 G n D
27 elsni n 0 n = 0
28 0nn0 0 0
29 27 28 eqeltrdi n 0 n 0
30 29 adantl N Fin R Ring G D 0 n 0 n 0
31 8 9 7 1 2 3 4 5 6 mat2pmatscmxcl N Fin R Ring G n D n 0 n × ˙ X ˙ T G n B
32 22 23 26 30 31 syl22anc N Fin R Ring G D 0 n 0 n × ˙ X ˙ T G n B
33 32 ralrimiva N Fin R Ring G D 0 n 0 n × ˙ X ˙ T G n B
34 3 19 21 33 gsummptcl N Fin R Ring G D 0 C n 0 n × ˙ X ˙ T G n B
35 eqid + C = + C
36 eqid 0 C = 0 C
37 3 35 36 mndrid C Mnd C n 0 n × ˙ X ˙ T G n B C n 0 n × ˙ X ˙ T G n + C 0 C = C n 0 n × ˙ X ˙ T G n
38 16 34 37 syl2anc N Fin R Ring G D 0 C n 0 n × ˙ X ˙ T G n + C 0 C = C n 0 n × ˙ X ˙ T G n
39 fz0sn 0 0 = 0
40 39 eqcomi 0 = 0 0
41 40 a1i N Fin R Ring G D 0 0 = 0 0
42 simpr N Fin R Ring G D 0 n 0 l = n l = n
43 27 ad2antlr N Fin R Ring G D 0 n 0 l = n n = 0
44 42 43 eqtrd N Fin R Ring G D 0 n 0 l = n l = 0
45 44 iftrued N Fin R Ring G D 0 n 0 l = n if l = 0 G 0 0 ˙ = G 0
46 fveq2 n = 0 G n = G 0
47 46 eqcomd n = 0 G 0 = G n
48 27 47 syl n 0 G 0 = G n
49 48 ad2antlr N Fin R Ring G D 0 n 0 l = n G 0 = G n
50 45 49 eqtrd N Fin R Ring G D 0 n 0 l = n if l = 0 G 0 0 ˙ = G n
51 1nn0 1 0
52 51 a1i n = 0 1 0
53 nn0uz 0 = 0
54 52 53 eleqtrdi n = 0 1 0
55 eluzfz1 1 0 0 0 1
56 54 55 syl n = 0 0 0 1
57 eleq1 n = 0 n 0 1 0 0 1
58 56 57 mpbird n = 0 n 0 1
59 27 58 syl n 0 n 0 1
60 59 adantl N Fin R Ring G D 0 n 0 n 0 1
61 ffvelrn G : 0 D n 0 G n D
62 61 ex G : 0 D n 0 G n D
63 24 62 syl G D 0 n 0 G n D
64 63 adantl N Fin R Ring G D 0 n 0 G n D
65 64 imp N Fin R Ring G D 0 n 0 G n D
66 11 50 60 65 fvmptd2 N Fin R Ring G D 0 n 0 H n = G n
67 66 eqcomd N Fin R Ring G D 0 n 0 G n = H n
68 67 fveq2d N Fin R Ring G D 0 n 0 T G n = T H n
69 68 oveq2d N Fin R Ring G D 0 n 0 n × ˙ X ˙ T G n = n × ˙ X ˙ T H n
70 41 69 mpteq12dva N Fin R Ring G D 0 n 0 n × ˙ X ˙ T G n = n 0 0 n × ˙ X ˙ T H n
71 70 oveq2d N Fin R Ring G D 0 C n 0 n × ˙ X ˙ T G n = C n = 0 0 n × ˙ X ˙ T H n
72 ovexd N Fin R Ring G D 0 0 + 1 V
73 3 36 mndidcl C Mnd 0 C B
74 15 73 syl N Fin R Ring 0 C B
75 74 adantr N Fin R Ring G D 0 0 C B
76 0p1e1 0 + 1 = 1
77 76 eqeq2i n = 0 + 1 n = 1
78 ax-1ne0 1 0
79 78 neii ¬ 1 = 0
80 eqeq1 n = 1 n = 0 1 = 0
81 79 80 mtbiri n = 1 ¬ n = 0
82 77 81 sylbi n = 0 + 1 ¬ n = 0
83 82 ad2antlr N Fin R Ring G D 0 n = 0 + 1 l = n ¬ n = 0
84 eqeq1 l = n l = 0 n = 0
85 84 notbid l = n ¬ l = 0 ¬ n = 0
86 85 adantl N Fin R Ring G D 0 n = 0 + 1 l = n ¬ l = 0 ¬ n = 0
87 83 86 mpbird N Fin R Ring G D 0 n = 0 + 1 l = n ¬ l = 0
88 87 iffalsed N Fin R Ring G D 0 n = 0 + 1 l = n if l = 0 G 0 0 ˙ = 0 ˙
89 88 10 eqtrdi N Fin R Ring G D 0 n = 0 + 1 l = n if l = 0 G 0 0 ˙ = 0 A
90 51 a1i n = 1 1 0
91 90 53 eleqtrdi n = 1 1 0
92 eluzfz2 1 0 1 0 1
93 91 92 syl n = 1 1 0 1
94 eleq1 n = 1 n 0 1 1 0 1
95 93 94 mpbird n = 1 n 0 1
96 77 95 sylbi n = 0 + 1 n 0 1
97 96 adantl N Fin R Ring G D 0 n = 0 + 1 n 0 1
98 fvexd N Fin R Ring G D 0 n = 0 + 1 0 A V
99 11 89 97 98 fvmptd2 N Fin R Ring G D 0 n = 0 + 1 H n = 0 A
100 99 fveq2d N Fin R Ring G D 0 n = 0 + 1 T H n = T 0 A
101 8 fveq2i 0 A = 0 N Mat R
102 2 fveq2i 0 C = 0 N Mat P
103 7 1 101 102 0mat2pmat R Ring N Fin T 0 A = 0 C
104 103 ancoms N Fin R Ring T 0 A = 0 C
105 104 ad2antrr N Fin R Ring G D 0 n = 0 + 1 T 0 A = 0 C
106 100 105 eqtrd N Fin R Ring G D 0 n = 0 + 1 T H n = 0 C
107 106 oveq2d N Fin R Ring G D 0 n = 0 + 1 n × ˙ X ˙ T H n = n × ˙ X ˙ 0 C
108 1 2 pmatlmod N Fin R Ring C LMod
109 108 ad2antrr N Fin R Ring G D 0 n = 0 + 1 C LMod
110 simpllr N Fin R Ring G D 0 n = 0 + 1 R Ring
111 eleq1 n = 1 n 0 1 0
112 90 111 mpbird n = 1 n 0
113 77 112 sylbi n = 0 + 1 n 0
114 113 adantl N Fin R Ring G D 0 n = 0 + 1 n 0
115 eqid mulGrp P = mulGrp P
116 eqid Base P = Base P
117 1 6 115 5 116 ply1moncl R Ring n 0 n × ˙ X Base P
118 110 114 117 syl2anc N Fin R Ring G D 0 n = 0 + 1 n × ˙ X Base P
119 1 ply1ring R Ring P Ring
120 2 matsca2 N Fin P Ring P = Scalar C
121 119 120 sylan2 N Fin R Ring P = Scalar C
122 121 eqcomd N Fin R Ring Scalar C = P
123 122 fveq2d N Fin R Ring Base Scalar C = Base P
124 123 eleq2d N Fin R Ring n × ˙ X Base Scalar C n × ˙ X Base P
125 124 ad2antrr N Fin R Ring G D 0 n = 0 + 1 n × ˙ X Base Scalar C n × ˙ X Base P
126 118 125 mpbird N Fin R Ring G D 0 n = 0 + 1 n × ˙ X Base Scalar C
127 eqid Scalar C = Scalar C
128 eqid Base Scalar C = Base Scalar C
129 127 4 128 36 lmodvs0 C LMod n × ˙ X Base Scalar C n × ˙ X ˙ 0 C = 0 C
130 109 126 129 syl2anc N Fin R Ring G D 0 n = 0 + 1 n × ˙ X ˙ 0 C = 0 C
131 107 130 eqtrd N Fin R Ring G D 0 n = 0 + 1 n × ˙ X ˙ T H n = 0 C
132 3 16 72 75 131 gsumsnd N Fin R Ring G D 0 C n 0 + 1 n × ˙ X ˙ T H n = 0 C
133 132 eqcomd N Fin R Ring G D 0 0 C = C n 0 + 1 n × ˙ X ˙ T H n
134 71 133 oveq12d N Fin R Ring G D 0 C n 0 n × ˙ X ˙ T G n + C 0 C = C n = 0 0 n × ˙ X ˙ T H n + C C n 0 + 1 n × ˙ X ˙ T H n
135 38 134 eqtr3d N Fin R Ring G D 0 C n 0 n × ˙ X ˙ T G n = C n = 0 0 n × ˙ X ˙ T H n + C C n 0 + 1 n × ˙ X ˙ T H n
136 135 adantr N Fin R Ring G D 0 M = C n 0 n × ˙ X ˙ T G n C n 0 n × ˙ X ˙ T G n = C n = 0 0 n × ˙ X ˙ T H n + C C n 0 + 1 n × ˙ X ˙ T H n
137 12 136 eqtrd N Fin R Ring G D 0 M = C n 0 n × ˙ X ˙ T G n M = C n = 0 0 n × ˙ X ˙ T H n + C C n 0 + 1 n × ˙ X ˙ T H n
138 137 3impa N Fin R Ring G D 0 M = C n 0 n × ˙ X ˙ T G n M = C n = 0 0 n × ˙ X ˙ T H n + C C n 0 + 1 n × ˙ X ˙ T H n
139 28 a1i N Fin R Ring G D 0 0 0
140 simplll N Fin R Ring G D 0 n 0 0 + 1 N Fin
141 simpllr N Fin R Ring G D 0 n 0 0 + 1 R Ring
142 id G : 0 D G : 0 D
143 c0ex 0 V
144 143 snid 0 0
145 144 a1i G : 0 D 0 0
146 142 145 ffvelrnd G : 0 D G 0 D
147 24 146 syl G D 0 G 0 D
148 147 ad2antlr N Fin R Ring G D 0 l 0 1 G 0 D
149 8 matring N Fin R Ring A Ring
150 9 10 ring0cl A Ring 0 ˙ D
151 149 150 syl N Fin R Ring 0 ˙ D
152 151 ad2antrr N Fin R Ring G D 0 l 0 1 0 ˙ D
153 148 152 ifcld N Fin R Ring G D 0 l 0 1 if l = 0 G 0 0 ˙ D
154 153 11 fmptd N Fin R Ring G D 0 H : 0 1 D
155 76 oveq2i 0 0 + 1 = 0 1
156 155 feq2i H : 0 0 + 1 D H : 0 1 D
157 154 156 sylibr N Fin R Ring G D 0 H : 0 0 + 1 D
158 157 ffvelrnda N Fin R Ring G D 0 n 0 0 + 1 H n D
159 elfznn0 n 0 0 + 1 n 0
160 159 adantl N Fin R Ring G D 0 n 0 0 + 1 n 0
161 8 9 7 1 2 3 4 5 6 mat2pmatscmxcl N Fin R Ring H n D n 0 n × ˙ X ˙ T H n B
162 140 141 158 160 161 syl22anc N Fin R Ring G D 0 n 0 0 + 1 n × ˙ X ˙ T H n B
163 3 35 19 139 162 gsummptfzsplit N Fin R Ring G D 0 C n = 0 0 + 1 n × ˙ X ˙ T H n = C n = 0 0 n × ˙ X ˙ T H n + C C n 0 + 1 n × ˙ X ˙ T H n
164 163 3adant3 N Fin R Ring G D 0 M = C n 0 n × ˙ X ˙ T G n C n = 0 0 + 1 n × ˙ X ˙ T H n = C n = 0 0 n × ˙ X ˙ T H n + C C n 0 + 1 n × ˙ X ˙ T H n
165 138 164 eqtr4d N Fin R Ring G D 0 M = C n 0 n × ˙ X ˙ T G n M = C n = 0 0 + 1 n × ˙ X ˙ T H n
166 155 mpteq1i n 0 0 + 1 n × ˙ X ˙ T H n = n 0 1 n × ˙ X ˙ T H n
167 166 oveq2i C n = 0 0 + 1 n × ˙ X ˙ T H n = C n = 0 1 n × ˙ X ˙ T H n
168 165 167 eqtrdi N Fin R Ring G D 0 M = C n 0 n × ˙ X ˙ T G n M = C n = 0 1 n × ˙ X ˙ T H n