Metamath Proof Explorer


Theorem pmatcollpw3fi1lem1

Description: Lemma 1 for pmatcollpw3fi1 . (Contributed by AV, 6-Nov-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pmatcollpw.p P=Poly1R
pmatcollpw.c C=NMatP
pmatcollpw.b B=BaseC
pmatcollpw.m ˙=C
pmatcollpw.e ×˙=mulGrpP
pmatcollpw.x X=var1R
pmatcollpw.t T=NmatToPolyMatR
pmatcollpw3.a A=NMatR
pmatcollpw3.d D=BaseA
pmatcollpw3fi1lem1.0 0˙=0A
pmatcollpw3fi1lem1.h H=l01ifl=0G00˙
Assertion pmatcollpw3fi1lem1 NFinRRingGD0M=Cn0n×˙X˙TGnM=Cn=01n×˙X˙THn

Proof

Step Hyp Ref Expression
1 pmatcollpw.p P=Poly1R
2 pmatcollpw.c C=NMatP
3 pmatcollpw.b B=BaseC
4 pmatcollpw.m ˙=C
5 pmatcollpw.e ×˙=mulGrpP
6 pmatcollpw.x X=var1R
7 pmatcollpw.t T=NmatToPolyMatR
8 pmatcollpw3.a A=NMatR
9 pmatcollpw3.d D=BaseA
10 pmatcollpw3fi1lem1.0 0˙=0A
11 pmatcollpw3fi1lem1.h H=l01ifl=0G00˙
12 simpr NFinRRingGD0M=Cn0n×˙X˙TGnM=Cn0n×˙X˙TGn
13 1 2 pmatring NFinRRingCRing
14 ringmnd CRingCMnd
15 13 14 syl NFinRRingCMnd
16 15 adantr NFinRRingGD0CMnd
17 ringcmn CRingCCMnd
18 13 17 syl NFinRRingCCMnd
19 18 adantr NFinRRingGD0CCMnd
20 snfi 0Fin
21 20 a1i NFinRRingGD00Fin
22 simplll NFinRRingGD0n0NFin
23 simpllr NFinRRingGD0n0RRing
24 elmapi GD0G:0D
25 24 adantl NFinRRingGD0G:0D
26 25 ffvelcdmda NFinRRingGD0n0GnD
27 elsni n0n=0
28 0nn0 00
29 27 28 eqeltrdi n0n0
30 29 adantl NFinRRingGD0n0n0
31 8 9 7 1 2 3 4 5 6 mat2pmatscmxcl NFinRRingGnDn0n×˙X˙TGnB
32 22 23 26 30 31 syl22anc NFinRRingGD0n0n×˙X˙TGnB
33 32 ralrimiva NFinRRingGD0n0n×˙X˙TGnB
34 3 19 21 33 gsummptcl NFinRRingGD0Cn0n×˙X˙TGnB
35 eqid +C=+C
36 eqid 0C=0C
37 3 35 36 mndrid CMndCn0n×˙X˙TGnBCn0n×˙X˙TGn+C0C=Cn0n×˙X˙TGn
38 16 34 37 syl2anc NFinRRingGD0Cn0n×˙X˙TGn+C0C=Cn0n×˙X˙TGn
39 fz0sn 00=0
40 39 eqcomi 0=00
41 40 a1i NFinRRingGD00=00
42 simpr NFinRRingGD0n0l=nl=n
43 27 ad2antlr NFinRRingGD0n0l=nn=0
44 42 43 eqtrd NFinRRingGD0n0l=nl=0
45 44 iftrued NFinRRingGD0n0l=nifl=0G00˙=G0
46 fveq2 n=0Gn=G0
47 46 eqcomd n=0G0=Gn
48 27 47 syl n0G0=Gn
49 48 ad2antlr NFinRRingGD0n0l=nG0=Gn
50 45 49 eqtrd NFinRRingGD0n0l=nifl=0G00˙=Gn
51 1nn0 10
52 51 a1i n=010
53 nn0uz 0=0
54 52 53 eleqtrdi n=010
55 eluzfz1 10001
56 54 55 syl n=0001
57 eleq1 n=0n01001
58 56 57 mpbird n=0n01
59 27 58 syl n0n01
60 59 adantl NFinRRingGD0n0n01
61 ffvelcdm G:0Dn0GnD
62 61 ex G:0Dn0GnD
63 24 62 syl GD0n0GnD
64 63 adantl NFinRRingGD0n0GnD
65 64 imp NFinRRingGD0n0GnD
66 11 50 60 65 fvmptd2 NFinRRingGD0n0Hn=Gn
67 66 eqcomd NFinRRingGD0n0Gn=Hn
68 67 fveq2d NFinRRingGD0n0TGn=THn
69 68 oveq2d NFinRRingGD0n0n×˙X˙TGn=n×˙X˙THn
70 41 69 mpteq12dva NFinRRingGD0n0n×˙X˙TGn=n00n×˙X˙THn
71 70 oveq2d NFinRRingGD0Cn0n×˙X˙TGn=Cn=00n×˙X˙THn
72 ovexd NFinRRingGD00+1V
73 3 36 mndidcl CMnd0CB
74 15 73 syl NFinRRing0CB
75 74 adantr NFinRRingGD00CB
76 0p1e1 0+1=1
77 76 eqeq2i n=0+1n=1
78 ax-1ne0 10
79 78 neii ¬1=0
80 eqeq1 n=1n=01=0
81 79 80 mtbiri n=1¬n=0
82 77 81 sylbi n=0+1¬n=0
83 82 ad2antlr NFinRRingGD0n=0+1l=n¬n=0
84 eqeq1 l=nl=0n=0
85 84 notbid l=n¬l=0¬n=0
86 85 adantl NFinRRingGD0n=0+1l=n¬l=0¬n=0
87 83 86 mpbird NFinRRingGD0n=0+1l=n¬l=0
88 87 iffalsed NFinRRingGD0n=0+1l=nifl=0G00˙=0˙
89 88 10 eqtrdi NFinRRingGD0n=0+1l=nifl=0G00˙=0A
90 51 a1i n=110
91 90 53 eleqtrdi n=110
92 eluzfz2 10101
93 91 92 syl n=1101
94 eleq1 n=1n01101
95 93 94 mpbird n=1n01
96 77 95 sylbi n=0+1n01
97 96 adantl NFinRRingGD0n=0+1n01
98 fvexd NFinRRingGD0n=0+10AV
99 11 89 97 98 fvmptd2 NFinRRingGD0n=0+1Hn=0A
100 99 fveq2d NFinRRingGD0n=0+1THn=T0A
101 8 fveq2i 0A=0NMatR
102 2 fveq2i 0C=0NMatP
103 7 1 101 102 0mat2pmat RRingNFinT0A=0C
104 103 ancoms NFinRRingT0A=0C
105 104 ad2antrr NFinRRingGD0n=0+1T0A=0C
106 100 105 eqtrd NFinRRingGD0n=0+1THn=0C
107 106 oveq2d NFinRRingGD0n=0+1n×˙X˙THn=n×˙X˙0C
108 1 2 pmatlmod NFinRRingCLMod
109 108 ad2antrr NFinRRingGD0n=0+1CLMod
110 simpllr NFinRRingGD0n=0+1RRing
111 eleq1 n=1n010
112 90 111 mpbird n=1n0
113 77 112 sylbi n=0+1n0
114 113 adantl NFinRRingGD0n=0+1n0
115 eqid mulGrpP=mulGrpP
116 eqid BaseP=BaseP
117 1 6 115 5 116 ply1moncl RRingn0n×˙XBaseP
118 110 114 117 syl2anc NFinRRingGD0n=0+1n×˙XBaseP
119 1 ply1ring RRingPRing
120 2 matsca2 NFinPRingP=ScalarC
121 119 120 sylan2 NFinRRingP=ScalarC
122 121 eqcomd NFinRRingScalarC=P
123 122 fveq2d NFinRRingBaseScalarC=BaseP
124 123 eleq2d NFinRRingn×˙XBaseScalarCn×˙XBaseP
125 124 ad2antrr NFinRRingGD0n=0+1n×˙XBaseScalarCn×˙XBaseP
126 118 125 mpbird NFinRRingGD0n=0+1n×˙XBaseScalarC
127 eqid ScalarC=ScalarC
128 eqid BaseScalarC=BaseScalarC
129 127 4 128 36 lmodvs0 CLModn×˙XBaseScalarCn×˙X˙0C=0C
130 109 126 129 syl2anc NFinRRingGD0n=0+1n×˙X˙0C=0C
131 107 130 eqtrd NFinRRingGD0n=0+1n×˙X˙THn=0C
132 3 16 72 75 131 gsumsnd NFinRRingGD0Cn0+1n×˙X˙THn=0C
133 132 eqcomd NFinRRingGD00C=Cn0+1n×˙X˙THn
134 71 133 oveq12d NFinRRingGD0Cn0n×˙X˙TGn+C0C=Cn=00n×˙X˙THn+CCn0+1n×˙X˙THn
135 38 134 eqtr3d NFinRRingGD0Cn0n×˙X˙TGn=Cn=00n×˙X˙THn+CCn0+1n×˙X˙THn
136 135 adantr NFinRRingGD0M=Cn0n×˙X˙TGnCn0n×˙X˙TGn=Cn=00n×˙X˙THn+CCn0+1n×˙X˙THn
137 12 136 eqtrd NFinRRingGD0M=Cn0n×˙X˙TGnM=Cn=00n×˙X˙THn+CCn0+1n×˙X˙THn
138 137 3impa NFinRRingGD0M=Cn0n×˙X˙TGnM=Cn=00n×˙X˙THn+CCn0+1n×˙X˙THn
139 28 a1i NFinRRingGD000
140 simplll NFinRRingGD0n00+1NFin
141 simpllr NFinRRingGD0n00+1RRing
142 id G:0DG:0D
143 c0ex 0V
144 143 snid 00
145 144 a1i G:0D00
146 142 145 ffvelcdmd G:0DG0D
147 24 146 syl GD0G0D
148 147 ad2antlr NFinRRingGD0l01G0D
149 8 matring NFinRRingARing
150 9 10 ring0cl ARing0˙D
151 149 150 syl NFinRRing0˙D
152 151 ad2antrr NFinRRingGD0l010˙D
153 148 152 ifcld NFinRRingGD0l01ifl=0G00˙D
154 153 11 fmptd NFinRRingGD0H:01D
155 76 oveq2i 00+1=01
156 155 feq2i H:00+1DH:01D
157 154 156 sylibr NFinRRingGD0H:00+1D
158 157 ffvelcdmda NFinRRingGD0n00+1HnD
159 elfznn0 n00+1n0
160 159 adantl NFinRRingGD0n00+1n0
161 8 9 7 1 2 3 4 5 6 mat2pmatscmxcl NFinRRingHnDn0n×˙X˙THnB
162 140 141 158 160 161 syl22anc NFinRRingGD0n00+1n×˙X˙THnB
163 3 35 19 139 162 gsummptfzsplit NFinRRingGD0Cn=00+1n×˙X˙THn=Cn=00n×˙X˙THn+CCn0+1n×˙X˙THn
164 163 3adant3 NFinRRingGD0M=Cn0n×˙X˙TGnCn=00+1n×˙X˙THn=Cn=00n×˙X˙THn+CCn0+1n×˙X˙THn
165 138 164 eqtr4d NFinRRingGD0M=Cn0n×˙X˙TGnM=Cn=00+1n×˙X˙THn
166 155 mpteq1i n00+1n×˙X˙THn=n01n×˙X˙THn
167 166 oveq2i Cn=00+1n×˙X˙THn=Cn=01n×˙X˙THn
168 165 167 eqtrdi NFinRRingGD0M=Cn0n×˙X˙TGnM=Cn=01n×˙X˙THn