Description: Write a polynomial matrix (over a commutative ring) as a finite sum of (at least two) products of variable powers and constant matrices with scalar entries. (Contributed by AV, 6-Nov-2019) (Revised by AV, 4-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmatcollpw.p | |
|
pmatcollpw.c | |
||
pmatcollpw.b | |
||
pmatcollpw.m | |
||
pmatcollpw.e | |
||
pmatcollpw.x | |
||
pmatcollpw.t | |
||
pmatcollpw3.a | |
||
pmatcollpw3.d | |
||
Assertion | pmatcollpw3fi1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmatcollpw.p | |
|
2 | pmatcollpw.c | |
|
3 | pmatcollpw.b | |
|
4 | pmatcollpw.m | |
|
5 | pmatcollpw.e | |
|
6 | pmatcollpw.x | |
|
7 | pmatcollpw.t | |
|
8 | pmatcollpw3.a | |
|
9 | pmatcollpw3.d | |
|
10 | 1 2 3 4 5 6 7 8 9 | pmatcollpw3fi | |
11 | df-n0 | |
|
12 | 11 | rexeqi | |
13 | rexun | |
|
14 | 12 13 | bitri | |
15 | c0ex | |
|
16 | oveq2 | |
|
17 | 0z | |
|
18 | fzsn | |
|
19 | 17 18 | mp1i | |
20 | 16 19 | eqtrd | |
21 | 20 | oveq2d | |
22 | 20 | mpteq1d | |
23 | 22 | oveq2d | |
24 | 23 | eqeq2d | |
25 | 21 24 | rexeqbidv | |
26 | 15 25 | rexsn | |
27 | 1 2 3 4 5 6 7 8 9 | pmatcollpw3fi1lem2 | |
28 | 27 | com12 | |
29 | 26 28 | sylbi | |
30 | 29 | jao1i | |
31 | 14 30 | sylbi | |
32 | 10 31 | mpcom | |