Metamath Proof Explorer


Theorem pmatcollpw3fi1

Description: Write a polynomial matrix (over a commutative ring) as a finite sum of (at least two) products of variable powers and constant matrices with scalar entries. (Contributed by AV, 6-Nov-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pmatcollpw.p P=Poly1R
pmatcollpw.c C=NMatP
pmatcollpw.b B=BaseC
pmatcollpw.m ˙=C
pmatcollpw.e ×˙=mulGrpP
pmatcollpw.x X=var1R
pmatcollpw.t T=NmatToPolyMatR
pmatcollpw3.a A=NMatR
pmatcollpw3.d D=BaseA
Assertion pmatcollpw3fi1 NFinRCRingMBsfD0sM=Cn=0sn×˙X˙Tfn

Proof

Step Hyp Ref Expression
1 pmatcollpw.p P=Poly1R
2 pmatcollpw.c C=NMatP
3 pmatcollpw.b B=BaseC
4 pmatcollpw.m ˙=C
5 pmatcollpw.e ×˙=mulGrpP
6 pmatcollpw.x X=var1R
7 pmatcollpw.t T=NmatToPolyMatR
8 pmatcollpw3.a A=NMatR
9 pmatcollpw3.d D=BaseA
10 1 2 3 4 5 6 7 8 9 pmatcollpw3fi NFinRCRingMBs0fD0sM=Cn=0sn×˙X˙Tfn
11 df-n0 0=0
12 11 rexeqi s0fD0sM=Cn=0sn×˙X˙Tfns0fD0sM=Cn=0sn×˙X˙Tfn
13 rexun s0fD0sM=Cn=0sn×˙X˙TfnsfD0sM=Cn=0sn×˙X˙Tfns0fD0sM=Cn=0sn×˙X˙Tfn
14 12 13 bitri s0fD0sM=Cn=0sn×˙X˙TfnsfD0sM=Cn=0sn×˙X˙Tfns0fD0sM=Cn=0sn×˙X˙Tfn
15 c0ex 0V
16 oveq2 s=00s=00
17 0z 0
18 fzsn 000=0
19 17 18 mp1i s=000=0
20 16 19 eqtrd s=00s=0
21 20 oveq2d s=0D0s=D0
22 20 mpteq1d s=0n0sn×˙X˙Tfn=n0n×˙X˙Tfn
23 22 oveq2d s=0Cn=0sn×˙X˙Tfn=Cn0n×˙X˙Tfn
24 23 eqeq2d s=0M=Cn=0sn×˙X˙TfnM=Cn0n×˙X˙Tfn
25 21 24 rexeqbidv s=0fD0sM=Cn=0sn×˙X˙TfnfD0M=Cn0n×˙X˙Tfn
26 15 25 rexsn s0fD0sM=Cn=0sn×˙X˙TfnfD0M=Cn0n×˙X˙Tfn
27 1 2 3 4 5 6 7 8 9 pmatcollpw3fi1lem2 NFinRCRingMBfD0M=Cn0n×˙X˙TfnsfD0sM=Cn=0sn×˙X˙Tfn
28 27 com12 fD0M=Cn0n×˙X˙TfnNFinRCRingMBsfD0sM=Cn=0sn×˙X˙Tfn
29 26 28 sylbi s0fD0sM=Cn=0sn×˙X˙TfnNFinRCRingMBsfD0sM=Cn=0sn×˙X˙Tfn
30 29 jao1i sfD0sM=Cn=0sn×˙X˙Tfns0fD0sM=Cn=0sn×˙X˙TfnNFinRCRingMBsfD0sM=Cn=0sn×˙X˙Tfn
31 14 30 sylbi s0fD0sM=Cn=0sn×˙X˙TfnNFinRCRingMBsfD0sM=Cn=0sn×˙X˙Tfn
32 10 31 mpcom NFinRCRingMBsfD0sM=Cn=0sn×˙X˙Tfn