| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmatcollpw.p |
|
| 2 |
|
pmatcollpw.c |
|
| 3 |
|
pmatcollpw.b |
|
| 4 |
|
pmatcollpw.m |
|
| 5 |
|
pmatcollpw.e |
|
| 6 |
|
pmatcollpw.x |
|
| 7 |
|
pmatcollpw.t |
|
| 8 |
|
pmatcollpw3.a |
|
| 9 |
|
pmatcollpw3.d |
|
| 10 |
|
fveq1 |
|
| 11 |
10
|
fveq2d |
|
| 12 |
11
|
oveq2d |
|
| 13 |
12
|
mpteq2dv |
|
| 14 |
13
|
oveq2d |
|
| 15 |
14
|
eqeq2d |
|
| 16 |
15
|
cbvrexvw |
|
| 17 |
|
crngring |
|
| 18 |
17
|
anim2i |
|
| 19 |
18
|
3adant3 |
|
| 20 |
19
|
ad2antrr |
|
| 21 |
|
simplr |
|
| 22 |
|
simpr |
|
| 23 |
|
eqid |
|
| 24 |
|
eqid |
|
| 25 |
1 2 3 4 5 6 7 8 9 23 24
|
pmatcollpw3fi1lem1 |
|
| 26 |
20 21 22 25
|
syl3anc |
|
| 27 |
|
1nn |
|
| 28 |
27
|
a1i |
|
| 29 |
|
oveq2 |
|
| 30 |
29
|
oveq2d |
|
| 31 |
29
|
mpteq1d |
|
| 32 |
31
|
oveq2d |
|
| 33 |
32
|
eqeq2d |
|
| 34 |
30 33
|
rexeqbidv |
|
| 35 |
34
|
adantl |
|
| 36 |
|
elmapi |
|
| 37 |
|
c0ex |
|
| 38 |
37
|
snid |
|
| 39 |
38
|
a1i |
|
| 40 |
|
ffvelcdm |
|
| 41 |
39 40
|
sylan2 |
|
| 42 |
41
|
ex |
|
| 43 |
36 42
|
syl |
|
| 44 |
43
|
adantl |
|
| 45 |
44
|
imp |
|
| 46 |
8
|
matring |
|
| 47 |
17 46
|
sylan2 |
|
| 48 |
47
|
3adant3 |
|
| 49 |
9 23
|
ring0cl |
|
| 50 |
48 49
|
syl |
|
| 51 |
50
|
ad2antrr |
|
| 52 |
45 51
|
ifcld |
|
| 53 |
52
|
fmpttd |
|
| 54 |
9
|
fvexi |
|
| 55 |
|
ovex |
|
| 56 |
54 55
|
pm3.2i |
|
| 57 |
|
elmapg |
|
| 58 |
56 57
|
mp1i |
|
| 59 |
53 58
|
mpbird |
|
| 60 |
59
|
adantr |
|
| 61 |
|
fveq1 |
|
| 62 |
61
|
fveq2d |
|
| 63 |
62
|
oveq2d |
|
| 64 |
63
|
mpteq2dv |
|
| 65 |
64
|
oveq2d |
|
| 66 |
65
|
eqeq2d |
|
| 67 |
66
|
adantl |
|
| 68 |
60 67
|
rspcedv |
|
| 69 |
68
|
imp |
|
| 70 |
28 35 69
|
rspcedvd |
|
| 71 |
26 70
|
mpdan |
|
| 72 |
71
|
rexlimdva2 |
|
| 73 |
16 72
|
biimtrid |
|