| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pmatcollpw.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pmatcollpw.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pmatcollpw.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 5 |  | pmatcollpw.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | pmatcollpw.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | pmatcollpw.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 8 |  | pmatcollpw3.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 9 |  | pmatcollpw3.d | ⊢ 𝐷  =  ( Base ‘ 𝐴 ) | 
						
							| 10 |  | fveq1 | ⊢ ( 𝑓  =  𝑔  →  ( 𝑓 ‘ 𝑛 )  =  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝑓  =  𝑔  →  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) )  =  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝑓  =  𝑔  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) )  =  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) | 
						
							| 13 | 12 | mpteq2dv | ⊢ ( 𝑓  =  𝑔  →  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) )  =  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝑓  =  𝑔  →  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 15 | 14 | eqeq2d | ⊢ ( 𝑓  =  𝑔  →  ( 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 16 | 15 | cbvrexvw | ⊢ ( ∃ 𝑓  ∈  ( 𝐷  ↑m  { 0 } ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  ∃ 𝑔  ∈  ( 𝐷  ↑m  { 0 } ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 17 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 18 | 17 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 19 | 18 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 20 | 19 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 21 |  | simplr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  →  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 23 |  | eqid | ⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ 𝐴 ) | 
						
							| 24 |  | eqid | ⊢ ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  =  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) | 
						
							| 25 | 1 2 3 4 5 6 7 8 9 23 24 | pmatcollpw3fi1lem1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 26 | 20 21 22 25 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 27 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 28 | 27 | a1i | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) )  →  1  ∈  ℕ ) | 
						
							| 29 |  | oveq2 | ⊢ ( 𝑠  =  1  →  ( 0 ... 𝑠 )  =  ( 0 ... 1 ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( 𝑠  =  1  →  ( 𝐷  ↑m  ( 0 ... 𝑠 ) )  =  ( 𝐷  ↑m  ( 0 ... 1 ) ) ) | 
						
							| 31 | 29 | mpteq1d | ⊢ ( 𝑠  =  1  →  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) )  =  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) | 
						
							| 32 | 31 | oveq2d | ⊢ ( 𝑠  =  1  →  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 33 | 32 | eqeq2d | ⊢ ( 𝑠  =  1  →  ( 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 34 | 30 33 | rexeqbidv | ⊢ ( 𝑠  =  1  →  ( ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 1 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) )  ∧  𝑠  =  1 )  →  ( ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 1 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 36 |  | elmapi | ⊢ ( 𝑔  ∈  ( 𝐷  ↑m  { 0 } )  →  𝑔 : { 0 } ⟶ 𝐷 ) | 
						
							| 37 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 38 | 37 | snid | ⊢ 0  ∈  { 0 } | 
						
							| 39 | 38 | a1i | ⊢ ( 𝑙  ∈  ( 0 ... 1 )  →  0  ∈  { 0 } ) | 
						
							| 40 |  | ffvelcdm | ⊢ ( ( 𝑔 : { 0 } ⟶ 𝐷  ∧  0  ∈  { 0 } )  →  ( 𝑔 ‘ 0 )  ∈  𝐷 ) | 
						
							| 41 | 39 40 | sylan2 | ⊢ ( ( 𝑔 : { 0 } ⟶ 𝐷  ∧  𝑙  ∈  ( 0 ... 1 ) )  →  ( 𝑔 ‘ 0 )  ∈  𝐷 ) | 
						
							| 42 | 41 | ex | ⊢ ( 𝑔 : { 0 } ⟶ 𝐷  →  ( 𝑙  ∈  ( 0 ... 1 )  →  ( 𝑔 ‘ 0 )  ∈  𝐷 ) ) | 
						
							| 43 | 36 42 | syl | ⊢ ( 𝑔  ∈  ( 𝐷  ↑m  { 0 } )  →  ( 𝑙  ∈  ( 0 ... 1 )  →  ( 𝑔 ‘ 0 )  ∈  𝐷 ) ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( 𝑙  ∈  ( 0 ... 1 )  →  ( 𝑔 ‘ 0 )  ∈  𝐷 ) ) | 
						
							| 45 | 44 | imp | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑙  ∈  ( 0 ... 1 ) )  →  ( 𝑔 ‘ 0 )  ∈  𝐷 ) | 
						
							| 46 | 8 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 47 | 17 46 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐴  ∈  Ring ) | 
						
							| 48 | 47 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐴  ∈  Ring ) | 
						
							| 49 | 9 23 | ring0cl | ⊢ ( 𝐴  ∈  Ring  →  ( 0g ‘ 𝐴 )  ∈  𝐷 ) | 
						
							| 50 | 48 49 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 0g ‘ 𝐴 )  ∈  𝐷 ) | 
						
							| 51 | 50 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑙  ∈  ( 0 ... 1 ) )  →  ( 0g ‘ 𝐴 )  ∈  𝐷 ) | 
						
							| 52 | 45 51 | ifcld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑙  ∈  ( 0 ... 1 ) )  →  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) )  ∈  𝐷 ) | 
						
							| 53 | 52 | fmpttd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) : ( 0 ... 1 ) ⟶ 𝐷 ) | 
						
							| 54 | 9 | fvexi | ⊢ 𝐷  ∈  V | 
						
							| 55 |  | ovex | ⊢ ( 0 ... 1 )  ∈  V | 
						
							| 56 | 54 55 | pm3.2i | ⊢ ( 𝐷  ∈  V  ∧  ( 0 ... 1 )  ∈  V ) | 
						
							| 57 |  | elmapg | ⊢ ( ( 𝐷  ∈  V  ∧  ( 0 ... 1 )  ∈  V )  →  ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  ∈  ( 𝐷  ↑m  ( 0 ... 1 ) )  ↔  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) : ( 0 ... 1 ) ⟶ 𝐷 ) ) | 
						
							| 58 | 56 57 | mp1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  ∈  ( 𝐷  ↑m  ( 0 ... 1 ) )  ↔  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) : ( 0 ... 1 ) ⟶ 𝐷 ) ) | 
						
							| 59 | 53 58 | mpbird | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  ∈  ( 𝐷  ↑m  ( 0 ... 1 ) ) ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  →  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  ∈  ( 𝐷  ↑m  ( 0 ... 1 ) ) ) | 
						
							| 61 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑓 ‘ 𝑛 )  =  ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) | 
						
							| 62 | 61 | fveq2d | ⊢ ( 𝑓  =  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) )  =  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) | 
						
							| 63 | 62 | oveq2d | ⊢ ( 𝑓  =  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) )  =  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) | 
						
							| 64 | 63 | mpteq2dv | ⊢ ( 𝑓  =  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) )  =  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 65 | 64 | oveq2d | ⊢ ( 𝑓  =  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  →  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 66 | 65 | eqeq2d | ⊢ ( 𝑓  =  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  ∧  𝑓  =  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) )  →  ( 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 68 | 60 67 | rspcedv | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  →  ( 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) )  →  ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 1 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 69 | 68 | imp | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) )  →  ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 1 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 70 | 28 35 69 | rspcedvd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 71 | 26 70 | mpdan | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 72 | 71 | rexlimdva2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑔  ∈  ( 𝐷  ↑m  { 0 } ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 73 | 16 72 | biimtrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑓  ∈  ( 𝐷  ↑m  { 0 } ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) |