| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pmatcollpw.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pmatcollpw.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pmatcollpw.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 5 |  | pmatcollpw.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | pmatcollpw.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | pmatcollpw.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 8 |  | pmatcollpw3.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 9 |  | pmatcollpw3.d | ⊢ 𝐷  =  ( Base ‘ 𝐴 ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 9 | pmatcollpw3fi | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 11 |  | df-n0 | ⊢ ℕ0  =  ( ℕ  ∪  { 0 } ) | 
						
							| 12 | 11 | rexeqi | ⊢ ( ∃ 𝑠  ∈  ℕ0 ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  ∃ 𝑠  ∈  ( ℕ  ∪  { 0 } ) ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 13 |  | rexun | ⊢ ( ∃ 𝑠  ∈  ( ℕ  ∪  { 0 } ) ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  ( ∃ 𝑠  ∈  ℕ ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ∨  ∃ 𝑠  ∈  { 0 } ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 14 | 12 13 | bitri | ⊢ ( ∃ 𝑠  ∈  ℕ0 ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  ( ∃ 𝑠  ∈  ℕ ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ∨  ∃ 𝑠  ∈  { 0 } ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 15 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑠  =  0  →  ( 0 ... 𝑠 )  =  ( 0 ... 0 ) ) | 
						
							| 17 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 18 |  | fzsn | ⊢ ( 0  ∈  ℤ  →  ( 0 ... 0 )  =  { 0 } ) | 
						
							| 19 | 17 18 | mp1i | ⊢ ( 𝑠  =  0  →  ( 0 ... 0 )  =  { 0 } ) | 
						
							| 20 | 16 19 | eqtrd | ⊢ ( 𝑠  =  0  →  ( 0 ... 𝑠 )  =  { 0 } ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( 𝑠  =  0  →  ( 𝐷  ↑m  ( 0 ... 𝑠 ) )  =  ( 𝐷  ↑m  { 0 } ) ) | 
						
							| 22 | 20 | mpteq1d | ⊢ ( 𝑠  =  0  →  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) )  =  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( 𝑠  =  0  →  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 24 | 23 | eqeq2d | ⊢ ( 𝑠  =  0  →  ( 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 25 | 21 24 | rexeqbidv | ⊢ ( 𝑠  =  0  →  ( ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  ∃ 𝑓  ∈  ( 𝐷  ↑m  { 0 } ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 26 | 15 25 | rexsn | ⊢ ( ∃ 𝑠  ∈  { 0 } ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  ∃ 𝑓  ∈  ( 𝐷  ↑m  { 0 } ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 27 | 1 2 3 4 5 6 7 8 9 | pmatcollpw3fi1lem2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑓  ∈  ( 𝐷  ↑m  { 0 } ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 28 | 27 | com12 | ⊢ ( ∃ 𝑓  ∈  ( 𝐷  ↑m  { 0 } ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 29 | 26 28 | sylbi | ⊢ ( ∃ 𝑠  ∈  { 0 } ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 30 | 29 | jao1i | ⊢ ( ( ∃ 𝑠  ∈  ℕ ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ∨  ∃ 𝑠  ∈  { 0 } ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 31 | 14 30 | sylbi | ⊢ ( ∃ 𝑠  ∈  ℕ0 ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 32 | 10 31 | mpcom | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) |