| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmatcollpwscmat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
pmatcollpwscmat.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
pmatcollpwscmat.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
pmatcollpwscmat.m1 |
⊢ ∗ = ( ·𝑠 ‘ 𝐶 ) |
| 5 |
|
pmatcollpwscmat.e1 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 6 |
|
pmatcollpwscmat.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 7 |
|
pmatcollpwscmat.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 8 |
|
pmatcollpwscmat.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 9 |
|
pmatcollpwscmat.d |
⊢ 𝐷 = ( Base ‘ 𝐴 ) |
| 10 |
|
pmatcollpwscmat.u |
⊢ 𝑈 = ( algSc ‘ 𝑃 ) |
| 11 |
|
pmatcollpwscmat.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 12 |
|
pmatcollpwscmat.e2 |
⊢ 𝐸 = ( Base ‘ 𝑃 ) |
| 13 |
|
pmatcollpwscmat.s |
⊢ 𝑆 = ( algSc ‘ 𝑃 ) |
| 14 |
|
pmatcollpwscmat.1 |
⊢ 1 = ( 1r ‘ 𝐶 ) |
| 15 |
|
pmatcollpwscmat.m2 |
⊢ 𝑀 = ( 𝑄 ∗ 1 ) |
| 16 |
15
|
oveqi |
⊢ ( 𝑎 𝑀 𝑏 ) = ( 𝑎 ( 𝑄 ∗ 1 ) 𝑏 ) |
| 17 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 18 |
17
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) ) |
| 19 |
|
simpr |
⊢ ( ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) → 𝑄 ∈ 𝐸 ) |
| 20 |
18 19
|
anim12i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) ∧ 𝑄 ∈ 𝐸 ) ) |
| 21 |
|
df-3an |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄 ∈ 𝐸 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) ∧ 𝑄 ∈ 𝐸 ) ) |
| 22 |
20 21
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄 ∈ 𝐸 ) ) |
| 23 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 24 |
2 12 23 14 4
|
scmatscmide |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄 ∈ 𝐸 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ( 𝑄 ∗ 1 ) 𝑏 ) = if ( 𝑎 = 𝑏 , 𝑄 , ( 0g ‘ 𝑃 ) ) ) |
| 25 |
22 24
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ( 𝑄 ∗ 1 ) 𝑏 ) = if ( 𝑎 = 𝑏 , 𝑄 , ( 0g ‘ 𝑃 ) ) ) |
| 26 |
16 25
|
eqtrid |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 𝑀 𝑏 ) = if ( 𝑎 = 𝑏 , 𝑄 , ( 0g ‘ 𝑃 ) ) ) |
| 27 |
26
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) = ( coe1 ‘ if ( 𝑎 = 𝑏 , 𝑄 , ( 0g ‘ 𝑃 ) ) ) ) |
| 28 |
27
|
fveq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) = ( ( coe1 ‘ if ( 𝑎 = 𝑏 , 𝑄 , ( 0g ‘ 𝑃 ) ) ) ‘ 𝐿 ) ) |
| 29 |
|
fvif |
⊢ ( coe1 ‘ if ( 𝑎 = 𝑏 , 𝑄 , ( 0g ‘ 𝑃 ) ) ) = if ( 𝑎 = 𝑏 , ( coe1 ‘ 𝑄 ) , ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ) |
| 30 |
29
|
fveq1i |
⊢ ( ( coe1 ‘ if ( 𝑎 = 𝑏 , 𝑄 , ( 0g ‘ 𝑃 ) ) ) ‘ 𝐿 ) = ( if ( 𝑎 = 𝑏 , ( coe1 ‘ 𝑄 ) , ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ) ‘ 𝐿 ) |
| 31 |
|
iffv |
⊢ ( if ( 𝑎 = 𝑏 , ( coe1 ‘ 𝑄 ) , ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ) ‘ 𝐿 ) = if ( 𝑎 = 𝑏 , ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) , ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ) |
| 32 |
30 31
|
eqtri |
⊢ ( ( coe1 ‘ if ( 𝑎 = 𝑏 , 𝑄 , ( 0g ‘ 𝑃 ) ) ) ‘ 𝐿 ) = if ( 𝑎 = 𝑏 , ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) , ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ) |
| 33 |
28 32
|
eqtrdi |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) = if ( 𝑎 = 𝑏 , ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) , ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ) ) |
| 34 |
33
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( if ( 𝑎 = 𝑏 , ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) , ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
| 35 |
|
ovif |
⊢ ( if ( 𝑎 = 𝑏 , ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) , ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = if ( 𝑎 = 𝑏 , ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) , ( ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
| 36 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 37 |
1 23 36
|
coe1z |
⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ ( 0g ‘ 𝑃 ) ) = ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ) |
| 38 |
37
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( coe1 ‘ ( 0g ‘ 𝑃 ) ) = ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ) |
| 39 |
38
|
fveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) = ( ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝐿 ) ) |
| 40 |
|
fvexd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝑅 ) ∈ V ) |
| 41 |
|
simpl |
⊢ ( ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) → 𝐿 ∈ ℕ0 ) |
| 42 |
40 41
|
anim12i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( 0g ‘ 𝑅 ) ∈ V ∧ 𝐿 ∈ ℕ0 ) ) |
| 43 |
|
fvconst2g |
⊢ ( ( ( 0g ‘ 𝑅 ) ∈ V ∧ 𝐿 ∈ ℕ0 ) → ( ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝐿 ) = ( 0g ‘ 𝑅 ) ) |
| 44 |
42 43
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝐿 ) = ( 0g ‘ 𝑅 ) ) |
| 45 |
39 44
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) = ( 0g ‘ 𝑅 ) ) |
| 46 |
45
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
| 47 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 48 |
47
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → 𝑃 ∈ LMod ) |
| 49 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 50 |
49 12
|
mgpbas |
⊢ 𝐸 = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
| 51 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 52 |
49
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 53 |
17 52
|
syl |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 54 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 55 |
54
|
a1i |
⊢ ( 𝑅 ∈ Ring → 0 ∈ ℕ0 ) |
| 56 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
| 57 |
56 1 12
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → ( var1 ‘ 𝑅 ) ∈ 𝐸 ) |
| 58 |
50 51 53 55 57
|
mulgnn0cld |
⊢ ( 𝑅 ∈ Ring → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ 𝐸 ) |
| 59 |
58
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ 𝐸 ) |
| 60 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 61 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 62 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) |
| 63 |
12 60 61 62 23
|
lmod0vs |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ 𝐸 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 64 |
48 59 63
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 65 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 66 |
65
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 67 |
66
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 68 |
67
|
oveq1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
| 69 |
68
|
eqeq1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ↔ ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 70 |
69
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ↔ ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 71 |
64 70
|
mpbird |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 72 |
46 71
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 73 |
72
|
ifeq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → if ( 𝑎 = 𝑏 , ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) , ( ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = if ( 𝑎 = 𝑏 , ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) , ( 0g ‘ 𝑃 ) ) ) |
| 74 |
73
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → if ( 𝑎 = 𝑏 , ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) , ( ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = if ( 𝑎 = 𝑏 , ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) , ( 0g ‘ 𝑃 ) ) ) |
| 75 |
35 74
|
eqtrid |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( if ( 𝑎 = 𝑏 , ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) , ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = if ( 𝑎 = 𝑏 , ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) , ( 0g ‘ 𝑃 ) ) ) |
| 76 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) |
| 77 |
76
|
ancomd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑄 ∈ 𝐸 ∧ 𝐿 ∈ ℕ0 ) ) |
| 78 |
|
eqid |
⊢ ( coe1 ‘ 𝑄 ) = ( coe1 ‘ 𝑄 ) |
| 79 |
78 12 1 11
|
coe1fvalcl |
⊢ ( ( 𝑄 ∈ 𝐸 ∧ 𝐿 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ 𝐾 ) |
| 80 |
77 79
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ 𝐾 ) |
| 81 |
65
|
eqcomd |
⊢ ( 𝑅 ∈ Ring → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
| 82 |
81
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
| 83 |
82
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
| 84 |
83 11
|
eqtr4di |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = 𝐾 ) |
| 85 |
84
|
eleq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↔ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ 𝐾 ) ) |
| 86 |
85
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↔ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ 𝐾 ) ) |
| 87 |
80 86
|
mpbird |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 88 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 89 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
| 90 |
10 60 88 61 89
|
asclval |
⊢ ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) → ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) = ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
| 91 |
87 90
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) = ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
| 92 |
1 56 49 51
|
ply1idvr1 |
⊢ ( 𝑅 ∈ Ring → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
| 93 |
92
|
eqcomd |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑃 ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
| 94 |
93
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 1r ‘ 𝑃 ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
| 95 |
94
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) = ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
| 96 |
91 95
|
eqtr2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ) |
| 97 |
96
|
ifeq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → if ( 𝑎 = 𝑏 , ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) , ( 0g ‘ 𝑃 ) ) = if ( 𝑎 = 𝑏 , ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) , ( 0g ‘ 𝑃 ) ) ) |
| 98 |
97
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → if ( 𝑎 = 𝑏 , ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) , ( 0g ‘ 𝑃 ) ) = if ( 𝑎 = 𝑏 , ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) , ( 0g ‘ 𝑃 ) ) ) |
| 99 |
34 75 98
|
3eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = if ( 𝑎 = 𝑏 , ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) , ( 0g ‘ 𝑃 ) ) ) |