Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpwscmat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pmatcollpwscmat.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pmatcollpwscmat.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
pmatcollpwscmat.m1 |
⊢ ∗ = ( ·𝑠 ‘ 𝐶 ) |
5 |
|
pmatcollpwscmat.e1 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
6 |
|
pmatcollpwscmat.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
7 |
|
pmatcollpwscmat.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
8 |
|
pmatcollpwscmat.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
9 |
|
pmatcollpwscmat.d |
⊢ 𝐷 = ( Base ‘ 𝐴 ) |
10 |
|
pmatcollpwscmat.u |
⊢ 𝑈 = ( algSc ‘ 𝑃 ) |
11 |
|
pmatcollpwscmat.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
12 |
|
pmatcollpwscmat.e2 |
⊢ 𝐸 = ( Base ‘ 𝑃 ) |
13 |
|
pmatcollpwscmat.s |
⊢ 𝑆 = ( algSc ‘ 𝑃 ) |
14 |
|
pmatcollpwscmat.1 |
⊢ 1 = ( 1r ‘ 𝐶 ) |
15 |
|
pmatcollpwscmat.m2 |
⊢ 𝑀 = ( 𝑄 ∗ 1 ) |
16 |
15
|
oveqi |
⊢ ( 𝑎 𝑀 𝑏 ) = ( 𝑎 ( 𝑄 ∗ 1 ) 𝑏 ) |
17 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
18 |
17
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) ) |
19 |
|
simpr |
⊢ ( ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) → 𝑄 ∈ 𝐸 ) |
20 |
18 19
|
anim12i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) ∧ 𝑄 ∈ 𝐸 ) ) |
21 |
|
df-3an |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄 ∈ 𝐸 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) ∧ 𝑄 ∈ 𝐸 ) ) |
22 |
20 21
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄 ∈ 𝐸 ) ) |
23 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
24 |
2 12 23 14 4
|
scmatscmide |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑄 ∈ 𝐸 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ( 𝑄 ∗ 1 ) 𝑏 ) = if ( 𝑎 = 𝑏 , 𝑄 , ( 0g ‘ 𝑃 ) ) ) |
25 |
22 24
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ( 𝑄 ∗ 1 ) 𝑏 ) = if ( 𝑎 = 𝑏 , 𝑄 , ( 0g ‘ 𝑃 ) ) ) |
26 |
16 25
|
eqtrid |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 𝑀 𝑏 ) = if ( 𝑎 = 𝑏 , 𝑄 , ( 0g ‘ 𝑃 ) ) ) |
27 |
26
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) = ( coe1 ‘ if ( 𝑎 = 𝑏 , 𝑄 , ( 0g ‘ 𝑃 ) ) ) ) |
28 |
27
|
fveq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) = ( ( coe1 ‘ if ( 𝑎 = 𝑏 , 𝑄 , ( 0g ‘ 𝑃 ) ) ) ‘ 𝐿 ) ) |
29 |
|
fvif |
⊢ ( coe1 ‘ if ( 𝑎 = 𝑏 , 𝑄 , ( 0g ‘ 𝑃 ) ) ) = if ( 𝑎 = 𝑏 , ( coe1 ‘ 𝑄 ) , ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ) |
30 |
29
|
fveq1i |
⊢ ( ( coe1 ‘ if ( 𝑎 = 𝑏 , 𝑄 , ( 0g ‘ 𝑃 ) ) ) ‘ 𝐿 ) = ( if ( 𝑎 = 𝑏 , ( coe1 ‘ 𝑄 ) , ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ) ‘ 𝐿 ) |
31 |
|
iffv |
⊢ ( if ( 𝑎 = 𝑏 , ( coe1 ‘ 𝑄 ) , ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ) ‘ 𝐿 ) = if ( 𝑎 = 𝑏 , ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) , ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ) |
32 |
30 31
|
eqtri |
⊢ ( ( coe1 ‘ if ( 𝑎 = 𝑏 , 𝑄 , ( 0g ‘ 𝑃 ) ) ) ‘ 𝐿 ) = if ( 𝑎 = 𝑏 , ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) , ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ) |
33 |
28 32
|
eqtrdi |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) = if ( 𝑎 = 𝑏 , ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) , ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ) ) |
34 |
33
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( if ( 𝑎 = 𝑏 , ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) , ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
35 |
|
ovif |
⊢ ( if ( 𝑎 = 𝑏 , ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) , ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = if ( 𝑎 = 𝑏 , ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) , ( ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
36 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
37 |
1 23 36
|
coe1z |
⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ ( 0g ‘ 𝑃 ) ) = ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ) |
38 |
37
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( coe1 ‘ ( 0g ‘ 𝑃 ) ) = ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ) |
39 |
38
|
fveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) = ( ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝐿 ) ) |
40 |
|
fvexd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝑅 ) ∈ V ) |
41 |
|
simpl |
⊢ ( ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) → 𝐿 ∈ ℕ0 ) |
42 |
40 41
|
anim12i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( 0g ‘ 𝑅 ) ∈ V ∧ 𝐿 ∈ ℕ0 ) ) |
43 |
|
fvconst2g |
⊢ ( ( ( 0g ‘ 𝑅 ) ∈ V ∧ 𝐿 ∈ ℕ0 ) → ( ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝐿 ) = ( 0g ‘ 𝑅 ) ) |
44 |
42 43
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝐿 ) = ( 0g ‘ 𝑅 ) ) |
45 |
39 44
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) = ( 0g ‘ 𝑅 ) ) |
46 |
45
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
47 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
48 |
47
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → 𝑃 ∈ LMod ) |
49 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
50 |
49
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
51 |
17 50
|
syl |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
52 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
53 |
52
|
a1i |
⊢ ( 𝑅 ∈ Ring → 0 ∈ ℕ0 ) |
54 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
55 |
54 1 12
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → ( var1 ‘ 𝑅 ) ∈ 𝐸 ) |
56 |
49 12
|
mgpbas |
⊢ 𝐸 = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
57 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
58 |
56 57
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ 𝑃 ) ∈ Mnd ∧ 0 ∈ ℕ0 ∧ ( var1 ‘ 𝑅 ) ∈ 𝐸 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ 𝐸 ) |
59 |
51 53 55 58
|
syl3anc |
⊢ ( 𝑅 ∈ Ring → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ 𝐸 ) |
60 |
59
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ 𝐸 ) |
61 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
62 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
63 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) |
64 |
12 61 62 63 23
|
lmod0vs |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ 𝐸 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) |
65 |
48 60 64
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) |
66 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
67 |
66
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
68 |
67
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
69 |
68
|
oveq1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
70 |
69
|
eqeq1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ↔ ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) ) |
71 |
70
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ↔ ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) ) |
72 |
65 71
|
mpbird |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) |
73 |
46 72
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) |
74 |
73
|
ifeq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → if ( 𝑎 = 𝑏 , ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) , ( ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = if ( 𝑎 = 𝑏 , ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) , ( 0g ‘ 𝑃 ) ) ) |
75 |
74
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → if ( 𝑎 = 𝑏 , ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) , ( ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = if ( 𝑎 = 𝑏 , ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) , ( 0g ‘ 𝑃 ) ) ) |
76 |
35 75
|
eqtrid |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( if ( 𝑎 = 𝑏 , ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) , ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = if ( 𝑎 = 𝑏 , ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) , ( 0g ‘ 𝑃 ) ) ) |
77 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) |
78 |
77
|
ancomd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑄 ∈ 𝐸 ∧ 𝐿 ∈ ℕ0 ) ) |
79 |
|
eqid |
⊢ ( coe1 ‘ 𝑄 ) = ( coe1 ‘ 𝑄 ) |
80 |
79 12 1 11
|
coe1fvalcl |
⊢ ( ( 𝑄 ∈ 𝐸 ∧ 𝐿 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ 𝐾 ) |
81 |
78 80
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ 𝐾 ) |
82 |
66
|
eqcomd |
⊢ ( 𝑅 ∈ Ring → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
83 |
82
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
84 |
83
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
85 |
84 11
|
eqtr4di |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = 𝐾 ) |
86 |
85
|
eleq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↔ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ 𝐾 ) ) |
87 |
86
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↔ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ 𝐾 ) ) |
88 |
81 87
|
mpbird |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
89 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
90 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
91 |
10 61 89 62 90
|
asclval |
⊢ ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) → ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) = ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
92 |
88 91
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) = ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
93 |
1 54 49 57
|
ply1idvr1 |
⊢ ( 𝑅 ∈ Ring → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
94 |
93
|
eqcomd |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑃 ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
95 |
94
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 1r ‘ 𝑃 ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
96 |
95
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) = ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
97 |
92 96
|
eqtr2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ) |
98 |
97
|
ifeq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → if ( 𝑎 = 𝑏 , ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) , ( 0g ‘ 𝑃 ) ) = if ( 𝑎 = 𝑏 , ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) , ( 0g ‘ 𝑃 ) ) ) |
99 |
98
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → if ( 𝑎 = 𝑏 , ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) , ( 0g ‘ 𝑃 ) ) = if ( 𝑎 = 𝑏 , ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) , ( 0g ‘ 𝑃 ) ) ) |
100 |
34 76 99
|
3eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = if ( 𝑎 = 𝑏 , ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) , ( 0g ‘ 𝑃 ) ) ) |