| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpwscmat.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pmatcollpwscmat.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pmatcollpwscmat.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pmatcollpwscmat.m1 | ⊢  ∗   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 5 |  | pmatcollpwscmat.e1 | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | pmatcollpwscmat.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | pmatcollpwscmat.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 8 |  | pmatcollpwscmat.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 9 |  | pmatcollpwscmat.d | ⊢ 𝐷  =  ( Base ‘ 𝐴 ) | 
						
							| 10 |  | pmatcollpwscmat.u | ⊢ 𝑈  =  ( algSc ‘ 𝑃 ) | 
						
							| 11 |  | pmatcollpwscmat.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 12 |  | pmatcollpwscmat.e2 | ⊢ 𝐸  =  ( Base ‘ 𝑃 ) | 
						
							| 13 |  | pmatcollpwscmat.s | ⊢ 𝑆  =  ( algSc ‘ 𝑃 ) | 
						
							| 14 |  | pmatcollpwscmat.1 | ⊢  1   =  ( 1r ‘ 𝐶 ) | 
						
							| 15 |  | pmatcollpwscmat.m2 | ⊢ 𝑀  =  ( 𝑄  ∗   1  ) | 
						
							| 16 | 15 | oveqi | ⊢ ( 𝑎 𝑀 𝑏 )  =  ( 𝑎 ( 𝑄  ∗   1  ) 𝑏 ) | 
						
							| 17 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 18 | 17 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring ) ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 )  →  𝑄  ∈  𝐸 ) | 
						
							| 20 | 18 19 | anim12i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring )  ∧  𝑄  ∈  𝐸 ) ) | 
						
							| 21 |  | df-3an | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring  ∧  𝑄  ∈  𝐸 )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring )  ∧  𝑄  ∈  𝐸 ) ) | 
						
							| 22 | 20 21 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring  ∧  𝑄  ∈  𝐸 ) ) | 
						
							| 23 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 24 | 2 12 23 14 4 | scmatscmide | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring  ∧  𝑄  ∈  𝐸 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( 𝑄  ∗   1  ) 𝑏 )  =  if ( 𝑎  =  𝑏 ,  𝑄 ,  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 25 | 22 24 | sylan | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( 𝑄  ∗   1  ) 𝑏 )  =  if ( 𝑎  =  𝑏 ,  𝑄 ,  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 26 | 16 25 | eqtrid | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 𝑀 𝑏 )  =  if ( 𝑎  =  𝑏 ,  𝑄 ,  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 27 | 26 | fveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) )  =  ( coe1 ‘ if ( 𝑎  =  𝑏 ,  𝑄 ,  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 28 | 27 | fveq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 )  =  ( ( coe1 ‘ if ( 𝑎  =  𝑏 ,  𝑄 ,  ( 0g ‘ 𝑃 ) ) ) ‘ 𝐿 ) ) | 
						
							| 29 |  | fvif | ⊢ ( coe1 ‘ if ( 𝑎  =  𝑏 ,  𝑄 ,  ( 0g ‘ 𝑃 ) ) )  =  if ( 𝑎  =  𝑏 ,  ( coe1 ‘ 𝑄 ) ,  ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ) | 
						
							| 30 | 29 | fveq1i | ⊢ ( ( coe1 ‘ if ( 𝑎  =  𝑏 ,  𝑄 ,  ( 0g ‘ 𝑃 ) ) ) ‘ 𝐿 )  =  ( if ( 𝑎  =  𝑏 ,  ( coe1 ‘ 𝑄 ) ,  ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ) ‘ 𝐿 ) | 
						
							| 31 |  | iffv | ⊢ ( if ( 𝑎  =  𝑏 ,  ( coe1 ‘ 𝑄 ) ,  ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ) ‘ 𝐿 )  =  if ( 𝑎  =  𝑏 ,  ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ,  ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ) | 
						
							| 32 | 30 31 | eqtri | ⊢ ( ( coe1 ‘ if ( 𝑎  =  𝑏 ,  𝑄 ,  ( 0g ‘ 𝑃 ) ) ) ‘ 𝐿 )  =  if ( 𝑎  =  𝑏 ,  ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ,  ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ) | 
						
							| 33 | 28 32 | eqtrdi | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 )  =  if ( 𝑎  =  𝑏 ,  ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ,  ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ) ) | 
						
							| 34 | 33 | oveq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( if ( 𝑎  =  𝑏 ,  ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ,  ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) | 
						
							| 35 |  | ovif | ⊢ ( if ( 𝑎  =  𝑏 ,  ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ,  ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  if ( 𝑎  =  𝑏 ,  ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ,  ( ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) | 
						
							| 36 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 37 | 1 23 36 | coe1z | ⊢ ( 𝑅  ∈  Ring  →  ( coe1 ‘ ( 0g ‘ 𝑃 ) )  =  ( ℕ0  ×  { ( 0g ‘ 𝑅 ) } ) ) | 
						
							| 38 | 37 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( coe1 ‘ ( 0g ‘ 𝑃 ) )  =  ( ℕ0  ×  { ( 0g ‘ 𝑅 ) } ) ) | 
						
							| 39 | 38 | fveq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 )  =  ( ( ℕ0  ×  { ( 0g ‘ 𝑅 ) } ) ‘ 𝐿 ) ) | 
						
							| 40 |  | fvexd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 41 |  | simpl | ⊢ ( ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 )  →  𝐿  ∈  ℕ0 ) | 
						
							| 42 | 40 41 | anim12i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( 0g ‘ 𝑅 )  ∈  V  ∧  𝐿  ∈  ℕ0 ) ) | 
						
							| 43 |  | fvconst2g | ⊢ ( ( ( 0g ‘ 𝑅 )  ∈  V  ∧  𝐿  ∈  ℕ0 )  →  ( ( ℕ0  ×  { ( 0g ‘ 𝑅 ) } ) ‘ 𝐿 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 44 | 42 43 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( ℕ0  ×  { ( 0g ‘ 𝑅 ) } ) ‘ 𝐿 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 45 | 39 44 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 46 | 45 | oveq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( ( 0g ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) | 
						
							| 47 | 1 | ply1lmod | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  LMod ) | 
						
							| 48 | 47 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  𝑃  ∈  LMod ) | 
						
							| 49 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 50 | 49 12 | mgpbas | ⊢ 𝐸  =  ( Base ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 51 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 52 | 49 | ringmgp | ⊢ ( 𝑃  ∈  Ring  →  ( mulGrp ‘ 𝑃 )  ∈  Mnd ) | 
						
							| 53 | 17 52 | syl | ⊢ ( 𝑅  ∈  Ring  →  ( mulGrp ‘ 𝑃 )  ∈  Mnd ) | 
						
							| 54 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 55 | 54 | a1i | ⊢ ( 𝑅  ∈  Ring  →  0  ∈  ℕ0 ) | 
						
							| 56 |  | eqid | ⊢ ( var1 ‘ 𝑅 )  =  ( var1 ‘ 𝑅 ) | 
						
							| 57 | 56 1 12 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  ( var1 ‘ 𝑅 )  ∈  𝐸 ) | 
						
							| 58 | 50 51 53 55 57 | mulgnn0cld | ⊢ ( 𝑅  ∈  Ring  →  ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) )  ∈  𝐸 ) | 
						
							| 59 | 58 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) )  ∈  𝐸 ) | 
						
							| 60 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 61 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 62 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 63 | 12 60 61 62 23 | lmod0vs | ⊢ ( ( 𝑃  ∈  LMod  ∧  ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) )  ∈  𝐸 )  →  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 64 | 48 59 63 | syl2anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 65 | 1 | ply1sca | ⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 67 | 66 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 68 | 67 | oveq1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ( 0g ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) | 
						
							| 69 | 68 | eqeq1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ( ( 0g ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑃 )  ↔  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( ( 0g ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑃 )  ↔  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 71 | 64 70 | mpbird | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( 0g ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 72 | 46 71 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 73 | 72 | ifeq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  if ( 𝑎  =  𝑏 ,  ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ,  ( ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  =  if ( 𝑎  =  𝑏 ,  ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ,  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  if ( 𝑎  =  𝑏 ,  ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ,  ( ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  =  if ( 𝑎  =  𝑏 ,  ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ,  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 75 | 35 74 | eqtrid | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( if ( 𝑎  =  𝑏 ,  ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ,  ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐿 ) ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  if ( 𝑎  =  𝑏 ,  ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ,  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 76 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) ) | 
						
							| 77 | 76 | ancomd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑄  ∈  𝐸  ∧  𝐿  ∈  ℕ0 ) ) | 
						
							| 78 |  | eqid | ⊢ ( coe1 ‘ 𝑄 )  =  ( coe1 ‘ 𝑄 ) | 
						
							| 79 | 78 12 1 11 | coe1fvalcl | ⊢ ( ( 𝑄  ∈  𝐸  ∧  𝐿  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 )  ∈  𝐾 ) | 
						
							| 80 | 77 79 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 )  ∈  𝐾 ) | 
						
							| 81 | 65 | eqcomd | ⊢ ( 𝑅  ∈  Ring  →  ( Scalar ‘ 𝑃 )  =  𝑅 ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Scalar ‘ 𝑃 )  =  𝑅 ) | 
						
							| 83 | 82 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 84 | 83 11 | eqtr4di | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  𝐾 ) | 
						
							| 85 | 84 | eleq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ↔  ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 )  ∈  𝐾 ) ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ↔  ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 )  ∈  𝐾 ) ) | 
						
							| 87 | 80 86 | mpbird | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 88 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 89 |  | eqid | ⊢ ( 1r ‘ 𝑃 )  =  ( 1r ‘ 𝑃 ) | 
						
							| 90 | 10 60 88 61 89 | asclval | ⊢ ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  →  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  =  ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) | 
						
							| 91 | 87 90 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  =  ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) | 
						
							| 92 | 1 56 49 51 | ply1idvr1 | ⊢ ( 𝑅  ∈  Ring  →  ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 93 | 92 | eqcomd | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑃 )  =  ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) | 
						
							| 94 | 93 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 1r ‘ 𝑃 )  =  ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) | 
						
							| 95 | 94 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 1r ‘ 𝑃 ) )  =  ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) | 
						
							| 96 | 91 95 | eqtr2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ) | 
						
							| 97 | 96 | ifeq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  if ( 𝑎  =  𝑏 ,  ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ,  ( 0g ‘ 𝑃 ) )  =  if ( 𝑎  =  𝑏 ,  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ,  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 98 | 97 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  if ( 𝑎  =  𝑏 ,  ( ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ,  ( 0g ‘ 𝑃 ) )  =  if ( 𝑎  =  𝑏 ,  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ,  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 99 | 34 75 98 | 3eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  if ( 𝑎  =  𝑏 ,  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ,  ( 0g ‘ 𝑃 ) ) ) |