| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpwscmat.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pmatcollpwscmat.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pmatcollpwscmat.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pmatcollpwscmat.m1 | ⊢  ∗   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 5 |  | pmatcollpwscmat.e1 | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | pmatcollpwscmat.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | pmatcollpwscmat.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 8 |  | pmatcollpwscmat.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 9 |  | pmatcollpwscmat.d | ⊢ 𝐷  =  ( Base ‘ 𝐴 ) | 
						
							| 10 |  | pmatcollpwscmat.u | ⊢ 𝑈  =  ( algSc ‘ 𝑃 ) | 
						
							| 11 |  | pmatcollpwscmat.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 12 |  | pmatcollpwscmat.e2 | ⊢ 𝐸  =  ( Base ‘ 𝑃 ) | 
						
							| 13 |  | pmatcollpwscmat.s | ⊢ 𝑆  =  ( algSc ‘ 𝑃 ) | 
						
							| 14 |  | pmatcollpwscmat.1 | ⊢  1   =  ( 1r ‘ 𝐶 ) | 
						
							| 15 |  | pmatcollpwscmat.m2 | ⊢ 𝑀  =  ( 𝑄  ∗   1  ) | 
						
							| 16 |  | simpl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑅  ∈  Ring ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  𝑅  ∈  Ring ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 )  →  𝑄  ∈  𝐸 ) | 
						
							| 20 | 19 | anim2i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑄  ∈  𝐸 ) ) | 
						
							| 21 |  | df-3an | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑄  ∈  𝐸 )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑄  ∈  𝐸 ) ) | 
						
							| 22 | 20 21 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑄  ∈  𝐸 ) ) | 
						
							| 23 | 1 2 3 12 4 14 | 1pmatscmul | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑄  ∈  𝐸 )  →  ( 𝑄  ∗   1  )  ∈  𝐵 ) | 
						
							| 24 | 15 23 | eqeltrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑄  ∈  𝐸 )  →  𝑀  ∈  𝐵 ) | 
						
							| 25 | 22 24 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  𝑀  ∈  𝐵 ) | 
						
							| 26 |  | simprl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  𝐿  ∈  ℕ0 ) | 
						
							| 27 | 1 2 3 8 9 | decpmatcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝐿  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝐿 )  ∈  𝐷 ) | 
						
							| 28 | 18 25 26 27 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑀  decompPMat  𝐿 )  ∈  𝐷 ) | 
						
							| 29 |  | df-3an | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑀  decompPMat  𝐿 )  ∈  𝐷 )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  decompPMat  𝐿 )  ∈  𝐷 ) ) | 
						
							| 30 | 16 28 29 | sylanbrc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑀  decompPMat  𝐿 )  ∈  𝐷 ) ) | 
						
							| 31 |  | eqid | ⊢ ( algSc ‘ 𝑃 )  =  ( algSc ‘ 𝑃 ) | 
						
							| 32 | 7 8 9 1 31 | mat2pmatval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑀  decompPMat  𝐿 )  ∈  𝐷 )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝐿 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝐿 ) 𝑗 ) ) ) ) | 
						
							| 33 | 30 32 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝐿 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝐿 ) 𝑗 ) ) ) ) | 
						
							| 34 | 18 25 26 | 3jca | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝐿  ∈  ℕ0 ) ) | 
						
							| 35 | 34 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝐿  ∈  ℕ0 ) ) | 
						
							| 36 |  | 3simpc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) ) | 
						
							| 37 | 1 2 3 | decpmate | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝐿  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 𝑀  decompPMat  𝐿 ) 𝑗 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) | 
						
							| 38 | 35 36 37 | syl2anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 ( 𝑀  decompPMat  𝐿 ) 𝑗 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) | 
						
							| 39 | 38 | fveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝐿 ) 𝑗 ) )  =  ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) ) | 
						
							| 40 | 39 | mpoeq3dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝐿 ) 𝑗 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) ) ) | 
						
							| 41 |  | simp1lr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 42 |  | simp2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑁 ) | 
						
							| 43 |  | simp3 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 44 | 25 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑀  ∈  𝐵 ) | 
						
							| 45 | 2 12 3 42 43 44 | matecld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑀 𝑗 )  ∈  𝐸 ) | 
						
							| 46 | 26 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝐿  ∈  ℕ0 ) | 
						
							| 47 |  | eqid | ⊢ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) | 
						
							| 48 | 47 12 1 11 | coe1fvalcl | ⊢ ( ( ( 𝑖 𝑀 𝑗 )  ∈  𝐸  ∧  𝐿  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 )  ∈  𝐾 ) | 
						
							| 49 | 45 46 48 | syl2anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 )  ∈  𝐾 ) | 
						
							| 50 |  | eqid | ⊢ ( var1 ‘ 𝑅 )  =  ( var1 ‘ 𝑅 ) | 
						
							| 51 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 52 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 53 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 54 | 11 1 50 51 52 53 31 | ply1scltm | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 )  ∈  𝐾 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) )  =  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) | 
						
							| 55 | 41 49 54 | syl2anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) )  =  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) | 
						
							| 56 | 55 | mpoeq3dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) | 
						
							| 57 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | pmatcollpwscmatlem1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  if ( 𝑎  =  𝑏 ,  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ,  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 58 |  | eqidd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) | 
						
							| 59 |  | oveq12 | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( 𝑖 𝑀 𝑗 )  =  ( 𝑎 𝑀 𝑏 ) ) | 
						
							| 60 | 59 | fveq2d | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  =  ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ) | 
						
							| 61 | 60 | fveq1d | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 )  =  ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) ) | 
						
							| 62 | 61 | oveq1d | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 ) )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) | 
						
							| 64 |  | simprl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑎  ∈  𝑁 ) | 
						
							| 65 |  | simprr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑏  ∈  𝑁 ) | 
						
							| 66 |  | ovexd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  ∈  V ) | 
						
							| 67 | 58 63 64 65 66 | ovmpod | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 )  =  ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) | 
						
							| 68 |  | simpll | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  𝑁  ∈  Fin ) | 
						
							| 69 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 70 | 69 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑃  ∈  Ring ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  𝑃  ∈  Ring ) | 
						
							| 72 |  | pm3.22 | ⊢ ( ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 )  →  ( 𝑄  ∈  𝐸  ∧  𝐿  ∈  ℕ0 ) ) | 
						
							| 73 | 72 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑄  ∈  𝐸  ∧  𝐿  ∈  ℕ0 ) ) | 
						
							| 74 |  | eqid | ⊢ ( coe1 ‘ 𝑄 )  =  ( coe1 ‘ 𝑄 ) | 
						
							| 75 | 74 12 1 11 | coe1fvalcl | ⊢ ( ( 𝑄  ∈  𝐸  ∧  𝐿  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 )  ∈  𝐾 ) | 
						
							| 76 | 73 75 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 )  ∈  𝐾 ) | 
						
							| 77 | 1 10 11 12 | ply1sclcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 )  ∈  𝐾 )  →  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∈  𝐸 ) | 
						
							| 78 | 18 76 77 | syl2anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∈  𝐸 ) | 
						
							| 79 | 68 71 78 | 3jca | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring  ∧  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∈  𝐸 ) ) | 
						
							| 80 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 81 | 2 12 80 14 4 | scmatscmide | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring  ∧  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∈  𝐸 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  ) 𝑏 )  =  if ( 𝑎  =  𝑏 ,  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ,  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 82 | 79 81 | sylan | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  ) 𝑏 )  =  if ( 𝑎  =  𝑏 ,  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ,  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 83 | 57 67 82 | 3eqtr4d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 )  =  ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  ) 𝑏 ) ) | 
						
							| 84 | 83 | ralrimivva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 )  =  ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  ) 𝑏 ) ) | 
						
							| 85 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 86 | 85 | a1i | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  0  ∈  ℕ0 ) | 
						
							| 87 | 11 1 50 51 52 53 12 | ply1tmcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 )  ∈  𝐾  ∧  0  ∈  ℕ0 )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  ∈  𝐸 ) | 
						
							| 88 | 41 49 86 87 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  ∈  𝐸 ) | 
						
							| 89 | 2 12 3 68 71 88 | matbas2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  ∈  𝐵 ) | 
						
							| 90 | 1 2 3 12 4 14 | 1pmatscmul | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∈  𝐸 )  →  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  )  ∈  𝐵 ) | 
						
							| 91 | 68 18 78 90 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  )  ∈  𝐵 ) | 
						
							| 92 | 2 3 | eqmat | ⊢ ( ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  ∈  𝐵  ∧  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  )  ∈  𝐵 )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  =  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  )  ↔  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 )  =  ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  ) 𝑏 ) ) ) | 
						
							| 93 | 89 91 92 | syl2anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  =  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  )  ↔  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 )  =  ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  ) 𝑏 ) ) ) | 
						
							| 94 | 84 93 | mpbird | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  =  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  ) ) | 
						
							| 95 | 56 94 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) )  =  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  ) ) | 
						
							| 96 | 33 40 95 | 3eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝐿 ) )  =  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  ) ) |