| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmatcollpwscmat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
pmatcollpwscmat.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
pmatcollpwscmat.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
pmatcollpwscmat.m1 |
⊢ ∗ = ( ·𝑠 ‘ 𝐶 ) |
| 5 |
|
pmatcollpwscmat.e1 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 6 |
|
pmatcollpwscmat.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 7 |
|
pmatcollpwscmat.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 8 |
|
pmatcollpwscmat.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 9 |
|
pmatcollpwscmat.d |
⊢ 𝐷 = ( Base ‘ 𝐴 ) |
| 10 |
|
pmatcollpwscmat.u |
⊢ 𝑈 = ( algSc ‘ 𝑃 ) |
| 11 |
|
pmatcollpwscmat.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 12 |
|
pmatcollpwscmat.e2 |
⊢ 𝐸 = ( Base ‘ 𝑃 ) |
| 13 |
|
pmatcollpwscmat.s |
⊢ 𝑆 = ( algSc ‘ 𝑃 ) |
| 14 |
|
pmatcollpwscmat.1 |
⊢ 1 = ( 1r ‘ 𝐶 ) |
| 15 |
|
pmatcollpwscmat.m2 |
⊢ 𝑀 = ( 𝑄 ∗ 1 ) |
| 16 |
|
simpl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 17 |
|
simpr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 ∈ Ring ) |
| 18 |
17
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → 𝑅 ∈ Ring ) |
| 19 |
|
simpr |
⊢ ( ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) → 𝑄 ∈ 𝐸 ) |
| 20 |
19
|
anim2i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑄 ∈ 𝐸 ) ) |
| 21 |
|
df-3an |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑄 ∈ 𝐸 ) ) |
| 22 |
20 21
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸 ) ) |
| 23 |
1 2 3 12 4 14
|
1pmatscmul |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸 ) → ( 𝑄 ∗ 1 ) ∈ 𝐵 ) |
| 24 |
15 23
|
eqeltrid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸 ) → 𝑀 ∈ 𝐵 ) |
| 25 |
22 24
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → 𝑀 ∈ 𝐵 ) |
| 26 |
|
simprl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → 𝐿 ∈ ℕ0 ) |
| 27 |
1 2 3 8 9
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐿 ) ∈ 𝐷 ) |
| 28 |
18 25 26 27
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑀 decompPMat 𝐿 ) ∈ 𝐷 ) |
| 29 |
|
df-3an |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑀 decompPMat 𝐿 ) ∈ 𝐷 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 decompPMat 𝐿 ) ∈ 𝐷 ) ) |
| 30 |
16 28 29
|
sylanbrc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑀 decompPMat 𝐿 ) ∈ 𝐷 ) ) |
| 31 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 32 |
7 8 9 1 31
|
mat2pmatval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑀 decompPMat 𝐿 ) ∈ 𝐷 ) → ( 𝑇 ‘ ( 𝑀 decompPMat 𝐿 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝐿 ) 𝑗 ) ) ) ) |
| 33 |
30 32
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑇 ‘ ( 𝑀 decompPMat 𝐿 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝐿 ) 𝑗 ) ) ) ) |
| 34 |
18 25 26
|
3jca |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝐿 ∈ ℕ0 ) ) |
| 35 |
34
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝐿 ∈ ℕ0 ) ) |
| 36 |
|
3simpc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) |
| 37 |
1 2 3
|
decpmate |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝐿 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( 𝑀 decompPMat 𝐿 ) 𝑗 ) = ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) |
| 38 |
35 36 37
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 ( 𝑀 decompPMat 𝐿 ) 𝑗 ) = ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) |
| 39 |
38
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝐿 ) 𝑗 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) ) |
| 40 |
39
|
mpoeq3dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝐿 ) 𝑗 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) ) ) |
| 41 |
|
simp1lr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 42 |
|
simp2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
| 43 |
|
simp3 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
| 44 |
25
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑀 ∈ 𝐵 ) |
| 45 |
2 12 3 42 43 44
|
matecld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑀 𝑗 ) ∈ 𝐸 ) |
| 46 |
26
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝐿 ∈ ℕ0 ) |
| 47 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) = ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) |
| 48 |
47 12 1 11
|
coe1fvalcl |
⊢ ( ( ( 𝑖 𝑀 𝑗 ) ∈ 𝐸 ∧ 𝐿 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ∈ 𝐾 ) |
| 49 |
45 46 48
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ∈ 𝐾 ) |
| 50 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
| 51 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 52 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 53 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 54 |
11 1 50 51 52 53 31
|
ply1scltm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ∈ 𝐾 ) → ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) = ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
| 55 |
41 49 54
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) = ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
| 56 |
55
|
mpoeq3dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
| 57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pmatcollpwscmatlem1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = if ( 𝑎 = 𝑏 , ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) , ( 0g ‘ 𝑃 ) ) ) |
| 58 |
|
eqidd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
| 59 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( 𝑖 𝑀 𝑗 ) = ( 𝑎 𝑀 𝑏 ) ) |
| 60 |
59
|
fveq2d |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) = ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ) |
| 61 |
60
|
fveq1d |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) = ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) ) |
| 62 |
61
|
oveq1d |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
| 63 |
62
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) ) → ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
| 64 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑎 ∈ 𝑁 ) |
| 65 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑏 ∈ 𝑁 ) |
| 66 |
|
ovexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ V ) |
| 67 |
58 63 64 65 66
|
ovmpod |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 ) = ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
| 68 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → 𝑁 ∈ Fin ) |
| 69 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 70 |
69
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ Ring ) |
| 71 |
70
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → 𝑃 ∈ Ring ) |
| 72 |
|
pm3.22 |
⊢ ( ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) → ( 𝑄 ∈ 𝐸 ∧ 𝐿 ∈ ℕ0 ) ) |
| 73 |
72
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑄 ∈ 𝐸 ∧ 𝐿 ∈ ℕ0 ) ) |
| 74 |
|
eqid |
⊢ ( coe1 ‘ 𝑄 ) = ( coe1 ‘ 𝑄 ) |
| 75 |
74 12 1 11
|
coe1fvalcl |
⊢ ( ( 𝑄 ∈ 𝐸 ∧ 𝐿 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ 𝐾 ) |
| 76 |
73 75
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ 𝐾 ) |
| 77 |
1 10 11 12
|
ply1sclcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ 𝐾 ) → ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∈ 𝐸 ) |
| 78 |
18 76 77
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∈ 𝐸 ) |
| 79 |
68 71 78
|
3jca |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∈ 𝐸 ) ) |
| 80 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 81 |
2 12 80 14 4
|
scmatscmide |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∈ 𝐸 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) 𝑏 ) = if ( 𝑎 = 𝑏 , ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) , ( 0g ‘ 𝑃 ) ) ) |
| 82 |
79 81
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) 𝑏 ) = if ( 𝑎 = 𝑏 , ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) , ( 0g ‘ 𝑃 ) ) ) |
| 83 |
57 67 82
|
3eqtr4d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 ) = ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) 𝑏 ) ) |
| 84 |
83
|
ralrimivva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 ) = ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) 𝑏 ) ) |
| 85 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 86 |
85
|
a1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 0 ∈ ℕ0 ) |
| 87 |
11 1 50 51 52 53 12
|
ply1tmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ∈ 𝐾 ∧ 0 ∈ ℕ0 ) → ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ 𝐸 ) |
| 88 |
41 49 86 87
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ 𝐸 ) |
| 89 |
2 12 3 68 71 88
|
matbas2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ) |
| 90 |
1 2 3 12 4 14
|
1pmatscmul |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∈ 𝐸 ) → ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) ∈ 𝐵 ) |
| 91 |
68 18 78 90
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) ∈ 𝐵 ) |
| 92 |
2 3
|
eqmat |
⊢ ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ∧ ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) ∈ 𝐵 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) ↔ ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 ) = ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) 𝑏 ) ) ) |
| 93 |
89 91 92
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) ↔ ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 ) = ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) 𝑏 ) ) ) |
| 94 |
84 93
|
mpbird |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) ) |
| 95 |
56 94
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) ) = ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) ) |
| 96 |
33 40 95
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑇 ‘ ( 𝑀 decompPMat 𝐿 ) ) = ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) ) |