Step |
Hyp |
Ref |
Expression |
1 |
|
ply1scltm.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
2 |
|
ply1scltm.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
ply1scltm.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
4 |
|
ply1scltm.m |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
5 |
|
ply1scltm.n |
⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) |
6 |
|
ply1scltm.e |
⊢ ↑ = ( .g ‘ 𝑁 ) |
7 |
|
ply1scltm.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
8 |
2
|
ply1sca2 |
⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) |
9 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
10 |
9 1
|
strfvi |
⊢ 𝐾 = ( Base ‘ ( I ‘ 𝑅 ) ) |
11 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
12 |
7 8 10 4 11
|
asclval |
⊢ ( 𝐹 ∈ 𝐾 → ( 𝐴 ‘ 𝐹 ) = ( 𝐹 · ( 1r ‘ 𝑃 ) ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → ( 𝐴 ‘ 𝐹 ) = ( 𝐹 · ( 1r ‘ 𝑃 ) ) ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
15 |
3 2 14
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
16 |
5 14
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑁 ) |
17 |
5 11
|
ringidval |
⊢ ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝑁 ) |
18 |
16 17 6
|
mulg0 |
⊢ ( 𝑋 ∈ ( Base ‘ 𝑃 ) → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑃 ) ) |
19 |
15 18
|
syl |
⊢ ( 𝑅 ∈ Ring → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑃 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑃 ) ) |
21 |
20
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → ( 𝐹 · ( 0 ↑ 𝑋 ) ) = ( 𝐹 · ( 1r ‘ 𝑃 ) ) ) |
22 |
13 21
|
eqtr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → ( 𝐴 ‘ 𝐹 ) = ( 𝐹 · ( 0 ↑ 𝑋 ) ) ) |