Metamath Proof Explorer


Theorem ply1scltm

Description: A scalar is a term with zero exponent. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses ply1scltm.k K = Base R
ply1scltm.p P = Poly 1 R
ply1scltm.x X = var 1 R
ply1scltm.m · ˙ = P
ply1scltm.n N = mulGrp P
ply1scltm.e × ˙ = N
ply1scltm.a A = algSc P
Assertion ply1scltm R Ring F K A F = F · ˙ 0 × ˙ X

Proof

Step Hyp Ref Expression
1 ply1scltm.k K = Base R
2 ply1scltm.p P = Poly 1 R
3 ply1scltm.x X = var 1 R
4 ply1scltm.m · ˙ = P
5 ply1scltm.n N = mulGrp P
6 ply1scltm.e × ˙ = N
7 ply1scltm.a A = algSc P
8 2 ply1sca2 I R = Scalar P
9 baseid Base = Slot Base ndx
10 9 1 strfvi K = Base I R
11 eqid 1 P = 1 P
12 7 8 10 4 11 asclval F K A F = F · ˙ 1 P
13 12 adantl R Ring F K A F = F · ˙ 1 P
14 eqid Base P = Base P
15 3 2 14 vr1cl R Ring X Base P
16 5 14 mgpbas Base P = Base N
17 5 11 ringidval 1 P = 0 N
18 16 17 6 mulg0 X Base P 0 × ˙ X = 1 P
19 15 18 syl R Ring 0 × ˙ X = 1 P
20 19 adantr R Ring F K 0 × ˙ X = 1 P
21 20 oveq2d R Ring F K F · ˙ 0 × ˙ X = F · ˙ 1 P
22 13 21 eqtr4d R Ring F K A F = F · ˙ 0 × ˙ X