Metamath Proof Explorer


Theorem coe1sclmul

Description: Coefficient vector of a polynomial multiplied on the left by a scalar. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses coe1sclmul.p P=Poly1R
coe1sclmul.b B=BaseP
coe1sclmul.k K=BaseR
coe1sclmul.a A=algScP
coe1sclmul.t ˙=P
coe1sclmul.u ·˙=R
Assertion coe1sclmul RRingXKYBcoe1AX˙Y=0×X·˙fcoe1Y

Proof

Step Hyp Ref Expression
1 coe1sclmul.p P=Poly1R
2 coe1sclmul.b B=BaseP
3 coe1sclmul.k K=BaseR
4 coe1sclmul.a A=algScP
5 coe1sclmul.t ˙=P
6 coe1sclmul.u ·˙=R
7 eqid 0R=0R
8 eqid var1R=var1R
9 eqid P=P
10 eqid mulGrpP=mulGrpP
11 eqid mulGrpP=mulGrpP
12 simp3 RRingXKYBYB
13 simp1 RRingXKYBRRing
14 simp2 RRingXKYBXK
15 0nn0 00
16 15 a1i RRingXKYB00
17 7 3 1 8 9 10 11 2 5 6 12 13 14 16 coe1tmmul RRingXKYBcoe1XP0mulGrpPvar1R˙Y=x0if0xX·˙coe1Yx00R
18 3 1 8 9 10 11 4 ply1scltm RRingXKAX=XP0mulGrpPvar1R
19 18 3adant3 RRingXKYBAX=XP0mulGrpPvar1R
20 19 fvoveq1d RRingXKYBcoe1AX˙Y=coe1XP0mulGrpPvar1R˙Y
21 nn0ex 0V
22 21 a1i RRingXKYB0V
23 simpl2 RRingXKYBx0XK
24 fvexd RRingXKYBx0coe1YxV
25 fconstmpt 0×X=x0X
26 25 a1i RRingXKYB0×X=x0X
27 eqid coe1Y=coe1Y
28 27 2 1 3 coe1f YBcoe1Y:0K
29 28 3ad2ant3 RRingXKYBcoe1Y:0K
30 29 feqmptd RRingXKYBcoe1Y=x0coe1Yx
31 22 23 24 26 30 offval2 RRingXKYB0×X·˙fcoe1Y=x0X·˙coe1Yx
32 nn0ge0 x00x
33 32 iftrued x0if0xX·˙coe1Yx00R=X·˙coe1Yx0
34 nn0cn x0x
35 34 subid1d x0x0=x
36 35 fveq2d x0coe1Yx0=coe1Yx
37 36 oveq2d x0X·˙coe1Yx0=X·˙coe1Yx
38 33 37 eqtrd x0if0xX·˙coe1Yx00R=X·˙coe1Yx
39 38 mpteq2ia x0if0xX·˙coe1Yx00R=x0X·˙coe1Yx
40 31 39 eqtr4di RRingXKYB0×X·˙fcoe1Y=x0if0xX·˙coe1Yx00R
41 17 20 40 3eqtr4d RRingXKYBcoe1AX˙Y=0×X·˙fcoe1Y