| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpwscmat.p |  | 
						
							| 2 |  | pmatcollpwscmat.c |  | 
						
							| 3 |  | pmatcollpwscmat.b |  | 
						
							| 4 |  | pmatcollpwscmat.m1 |  | 
						
							| 5 |  | pmatcollpwscmat.e1 |  | 
						
							| 6 |  | pmatcollpwscmat.x |  | 
						
							| 7 |  | pmatcollpwscmat.t |  | 
						
							| 8 |  | pmatcollpwscmat.a |  | 
						
							| 9 |  | pmatcollpwscmat.d |  | 
						
							| 10 |  | pmatcollpwscmat.u |  | 
						
							| 11 |  | pmatcollpwscmat.k |  | 
						
							| 12 |  | pmatcollpwscmat.e2 |  | 
						
							| 13 |  | pmatcollpwscmat.s |  | 
						
							| 14 |  | pmatcollpwscmat.1 |  | 
						
							| 15 |  | pmatcollpwscmat.m2 |  | 
						
							| 16 |  | simpl |  | 
						
							| 17 |  | simpr |  | 
						
							| 18 | 17 | adantr |  | 
						
							| 19 |  | simpr |  | 
						
							| 20 | 19 | anim2i |  | 
						
							| 21 |  | df-3an |  | 
						
							| 22 | 20 21 | sylibr |  | 
						
							| 23 | 1 2 3 12 4 14 | 1pmatscmul |  | 
						
							| 24 | 15 23 | eqeltrid |  | 
						
							| 25 | 22 24 | syl |  | 
						
							| 26 |  | simprl |  | 
						
							| 27 | 1 2 3 8 9 | decpmatcl |  | 
						
							| 28 | 18 25 26 27 | syl3anc |  | 
						
							| 29 |  | df-3an |  | 
						
							| 30 | 16 28 29 | sylanbrc |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 | 7 8 9 1 31 | mat2pmatval |  | 
						
							| 33 | 30 32 | syl |  | 
						
							| 34 | 18 25 26 | 3jca |  | 
						
							| 35 | 34 | 3ad2ant1 |  | 
						
							| 36 |  | 3simpc |  | 
						
							| 37 | 1 2 3 | decpmate |  | 
						
							| 38 | 35 36 37 | syl2anc |  | 
						
							| 39 | 38 | fveq2d |  | 
						
							| 40 | 39 | mpoeq3dva |  | 
						
							| 41 |  | simp1lr |  | 
						
							| 42 |  | simp2 |  | 
						
							| 43 |  | simp3 |  | 
						
							| 44 | 25 | 3ad2ant1 |  | 
						
							| 45 | 2 12 3 42 43 44 | matecld |  | 
						
							| 46 | 26 | 3ad2ant1 |  | 
						
							| 47 |  | eqid |  | 
						
							| 48 | 47 12 1 11 | coe1fvalcl |  | 
						
							| 49 | 45 46 48 | syl2anc |  | 
						
							| 50 |  | eqid |  | 
						
							| 51 |  | eqid |  | 
						
							| 52 |  | eqid |  | 
						
							| 53 |  | eqid |  | 
						
							| 54 | 11 1 50 51 52 53 31 | ply1scltm |  | 
						
							| 55 | 41 49 54 | syl2anc |  | 
						
							| 56 | 55 | mpoeq3dva |  | 
						
							| 57 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | pmatcollpwscmatlem1 |  | 
						
							| 58 |  | eqidd |  | 
						
							| 59 |  | oveq12 |  | 
						
							| 60 | 59 | fveq2d |  | 
						
							| 61 | 60 | fveq1d |  | 
						
							| 62 | 61 | oveq1d |  | 
						
							| 63 | 62 | adantl |  | 
						
							| 64 |  | simprl |  | 
						
							| 65 |  | simprr |  | 
						
							| 66 |  | ovexd |  | 
						
							| 67 | 58 63 64 65 66 | ovmpod |  | 
						
							| 68 |  | simpll |  | 
						
							| 69 | 1 | ply1ring |  | 
						
							| 70 | 69 | adantl |  | 
						
							| 71 | 70 | adantr |  | 
						
							| 72 |  | pm3.22 |  | 
						
							| 73 | 72 | adantl |  | 
						
							| 74 |  | eqid |  | 
						
							| 75 | 74 12 1 11 | coe1fvalcl |  | 
						
							| 76 | 73 75 | syl |  | 
						
							| 77 | 1 10 11 12 | ply1sclcl |  | 
						
							| 78 | 18 76 77 | syl2anc |  | 
						
							| 79 | 68 71 78 | 3jca |  | 
						
							| 80 |  | eqid |  | 
						
							| 81 | 2 12 80 14 4 | scmatscmide |  | 
						
							| 82 | 79 81 | sylan |  | 
						
							| 83 | 57 67 82 | 3eqtr4d |  | 
						
							| 84 | 83 | ralrimivva |  | 
						
							| 85 |  | 0nn0 |  | 
						
							| 86 | 85 | a1i |  | 
						
							| 87 | 11 1 50 51 52 53 12 | ply1tmcl |  | 
						
							| 88 | 41 49 86 87 | syl3anc |  | 
						
							| 89 | 2 12 3 68 71 88 | matbas2d |  | 
						
							| 90 | 1 2 3 12 4 14 | 1pmatscmul |  | 
						
							| 91 | 68 18 78 90 | syl3anc |  | 
						
							| 92 | 2 3 | eqmat |  | 
						
							| 93 | 89 91 92 | syl2anc |  | 
						
							| 94 | 84 93 | mpbird |  | 
						
							| 95 | 56 94 | eqtrd |  | 
						
							| 96 | 33 40 95 | 3eqtrd |  |