Description: An entry of a scalar matrix expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | scmatscmide.a | |
|
scmatscmide.b | |
||
scmatscmide.0 | |
||
scmatscmide.1 | |
||
scmatscmide.m | |
||
Assertion | scmatscmide | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatscmide.a | |
|
2 | scmatscmide.b | |
|
3 | scmatscmide.0 | |
|
4 | scmatscmide.1 | |
|
5 | scmatscmide.m | |
|
6 | simpl2 | |
|
7 | simp3 | |
|
8 | 1 | matring | |
9 | eqid | |
|
10 | 9 4 | ringidcl | |
11 | 8 10 | syl | |
12 | 11 | 3adant3 | |
13 | 7 12 | jca | |
14 | 13 | adantr | |
15 | simpr | |
|
16 | eqid | |
|
17 | 1 9 2 5 16 | matvscacell | |
18 | 6 14 15 17 | syl3anc | |
19 | eqid | |
|
20 | simpl1 | |
|
21 | simprl | |
|
22 | simprr | |
|
23 | 1 19 3 20 6 21 22 4 | mat1ov | |
24 | 23 | oveq2d | |
25 | ovif2 | |
|
26 | 2 16 19 | ringridm | |
27 | 26 | 3adant1 | |
28 | 2 16 3 | ringrz | |
29 | 28 | 3adant1 | |
30 | 27 29 | ifeq12d | |
31 | 25 30 | eqtrid | |
32 | 31 | adantr | |
33 | 18 24 32 | 3eqtrd | |