Metamath Proof Explorer


Theorem scmatscmide

Description: An entry of a scalar matrix expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019)

Ref Expression
Hypotheses scmatscmide.a A = N Mat R
scmatscmide.b B = Base R
scmatscmide.0 0 ˙ = 0 R
scmatscmide.1 1 ˙ = 1 A
scmatscmide.m ˙ = A
Assertion scmatscmide N Fin R Ring C B I N J N I C ˙ 1 ˙ J = if I = J C 0 ˙

Proof

Step Hyp Ref Expression
1 scmatscmide.a A = N Mat R
2 scmatscmide.b B = Base R
3 scmatscmide.0 0 ˙ = 0 R
4 scmatscmide.1 1 ˙ = 1 A
5 scmatscmide.m ˙ = A
6 simpl2 N Fin R Ring C B I N J N R Ring
7 simp3 N Fin R Ring C B C B
8 1 matring N Fin R Ring A Ring
9 eqid Base A = Base A
10 9 4 ringidcl A Ring 1 ˙ Base A
11 8 10 syl N Fin R Ring 1 ˙ Base A
12 11 3adant3 N Fin R Ring C B 1 ˙ Base A
13 7 12 jca N Fin R Ring C B C B 1 ˙ Base A
14 13 adantr N Fin R Ring C B I N J N C B 1 ˙ Base A
15 simpr N Fin R Ring C B I N J N I N J N
16 eqid R = R
17 1 9 2 5 16 matvscacell R Ring C B 1 ˙ Base A I N J N I C ˙ 1 ˙ J = C R I 1 ˙ J
18 6 14 15 17 syl3anc N Fin R Ring C B I N J N I C ˙ 1 ˙ J = C R I 1 ˙ J
19 eqid 1 R = 1 R
20 simpl1 N Fin R Ring C B I N J N N Fin
21 simprl N Fin R Ring C B I N J N I N
22 simprr N Fin R Ring C B I N J N J N
23 1 19 3 20 6 21 22 4 mat1ov N Fin R Ring C B I N J N I 1 ˙ J = if I = J 1 R 0 ˙
24 23 oveq2d N Fin R Ring C B I N J N C R I 1 ˙ J = C R if I = J 1 R 0 ˙
25 ovif2 C R if I = J 1 R 0 ˙ = if I = J C R 1 R C R 0 ˙
26 2 16 19 ringridm R Ring C B C R 1 R = C
27 26 3adant1 N Fin R Ring C B C R 1 R = C
28 2 16 3 ringrz R Ring C B C R 0 ˙ = 0 ˙
29 28 3adant1 N Fin R Ring C B C R 0 ˙ = 0 ˙
30 27 29 ifeq12d N Fin R Ring C B if I = J C R 1 R C R 0 ˙ = if I = J C 0 ˙
31 25 30 syl5eq N Fin R Ring C B C R if I = J 1 R 0 ˙ = if I = J C 0 ˙
32 31 adantr N Fin R Ring C B I N J N C R if I = J 1 R 0 ˙ = if I = J C 0 ˙
33 18 24 32 3eqtrd N Fin R Ring C B I N J N I C ˙ 1 ˙ J = if I = J C 0 ˙