Metamath Proof Explorer


Theorem scmatscmide

Description: An entry of a scalar matrix expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019)

Ref Expression
Hypotheses scmatscmide.a A=NMatR
scmatscmide.b B=BaseR
scmatscmide.0 0˙=0R
scmatscmide.1 1˙=1A
scmatscmide.m ˙=A
Assertion scmatscmide NFinRRingCBINJNIC˙1˙J=ifI=JC0˙

Proof

Step Hyp Ref Expression
1 scmatscmide.a A=NMatR
2 scmatscmide.b B=BaseR
3 scmatscmide.0 0˙=0R
4 scmatscmide.1 1˙=1A
5 scmatscmide.m ˙=A
6 simpl2 NFinRRingCBINJNRRing
7 simp3 NFinRRingCBCB
8 1 matring NFinRRingARing
9 eqid BaseA=BaseA
10 9 4 ringidcl ARing1˙BaseA
11 8 10 syl NFinRRing1˙BaseA
12 11 3adant3 NFinRRingCB1˙BaseA
13 7 12 jca NFinRRingCBCB1˙BaseA
14 13 adantr NFinRRingCBINJNCB1˙BaseA
15 simpr NFinRRingCBINJNINJN
16 eqid R=R
17 1 9 2 5 16 matvscacell RRingCB1˙BaseAINJNIC˙1˙J=CRI1˙J
18 6 14 15 17 syl3anc NFinRRingCBINJNIC˙1˙J=CRI1˙J
19 eqid 1R=1R
20 simpl1 NFinRRingCBINJNNFin
21 simprl NFinRRingCBINJNIN
22 simprr NFinRRingCBINJNJN
23 1 19 3 20 6 21 22 4 mat1ov NFinRRingCBINJNI1˙J=ifI=J1R0˙
24 23 oveq2d NFinRRingCBINJNCRI1˙J=CRifI=J1R0˙
25 ovif2 CRifI=J1R0˙=ifI=JCR1RCR0˙
26 2 16 19 ringridm RRingCBCR1R=C
27 26 3adant1 NFinRRingCBCR1R=C
28 2 16 3 ringrz RRingCBCR0˙=0˙
29 28 3adant1 NFinRRingCBCR0˙=0˙
30 27 29 ifeq12d NFinRRingCBifI=JCR1RCR0˙=ifI=JC0˙
31 25 30 eqtrid NFinRRingCBCRifI=J1R0˙=ifI=JC0˙
32 31 adantr NFinRRingCBINJNCRifI=J1R0˙=ifI=JC0˙
33 18 24 32 3eqtrd NFinRRingCBINJNIC˙1˙J=ifI=JC0˙