Step |
Hyp |
Ref |
Expression |
1 |
|
scmatscmide.a |
|
2 |
|
scmatscmide.b |
|
3 |
|
scmatscmide.0 |
|
4 |
|
scmatscmide.1 |
|
5 |
|
scmatscmide.m |
|
6 |
|
scmatscmiddistr.t |
|
7 |
|
scmatscmiddistr.m |
|
8 |
|
simprl |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
1 9 3 10
|
dmatid |
|
12 |
4 11
|
eqeltrid |
|
13 |
12
|
adantr |
|
14 |
8 13
|
jca |
|
15 |
2 1 9 5 10
|
dmatscmcl |
|
16 |
14 15
|
syldan |
|
17 |
|
simprr |
|
18 |
17 13
|
jca |
|
19 |
2 1 9 5 10
|
dmatscmcl |
|
20 |
18 19
|
syldan |
|
21 |
16 20
|
jca |
|
22 |
7
|
oveqi |
|
23 |
1 9 3 10
|
dmatmul |
|
24 |
22 23
|
eqtrid |
|
25 |
21 24
|
syldan |
|
26 |
|
simpll |
|
27 |
|
simplr |
|
28 |
26 27 8
|
3jca |
|
29 |
28
|
3ad2ant1 |
|
30 |
|
3simpc |
|
31 |
1 2 3 4 5
|
scmatscmide |
|
32 |
29 30 31
|
syl2anc |
|
33 |
26 27 17
|
3jca |
|
34 |
33
|
3ad2ant1 |
|
35 |
1 2 3 4 5
|
scmatscmide |
|
36 |
34 30 35
|
syl2anc |
|
37 |
32 36
|
oveq12d |
|
38 |
37
|
ifeq1d |
|
39 |
38
|
mpoeq3dva |
|
40 |
|
iftrue |
|
41 |
|
iftrue |
|
42 |
40 41
|
oveq12d |
|
43 |
42
|
adantl |
|
44 |
43
|
ifeq1da |
|
45 |
44
|
mpoeq3dva |
|
46 |
|
eqidd |
|
47 |
|
eqeq12 |
|
48 |
6
|
eqcomi |
|
49 |
48
|
oveqi |
|
50 |
49
|
a1i |
|
51 |
47 50
|
ifbieq1d |
|
52 |
51
|
adantl |
|
53 |
|
simprl |
|
54 |
|
simprr |
|
55 |
|
ovex |
|
56 |
3
|
fvexi |
|
57 |
55 56
|
ifex |
|
58 |
57
|
a1i |
|
59 |
46 52 53 54 58
|
ovmpod |
|
60 |
27 8 17
|
3jca |
|
61 |
2 6
|
ringcl |
|
62 |
60 61
|
syl |
|
63 |
26 27 62
|
3jca |
|
64 |
1 2 3 4 5
|
scmatscmide |
|
65 |
63 64
|
sylan |
|
66 |
59 65
|
eqtr4d |
|
67 |
66
|
ralrimivva |
|
68 |
|
eqid |
|
69 |
2 68
|
ringcl |
|
70 |
60 69
|
syl |
|
71 |
2 3
|
ring0cl |
|
72 |
71
|
adantl |
|
73 |
72
|
adantr |
|
74 |
70 73
|
ifcld |
|
75 |
74
|
3ad2ant1 |
|
76 |
1 2 9 26 27 75
|
matbas2d |
|
77 |
1
|
matring |
|
78 |
9 4
|
ringidcl |
|
79 |
77 78
|
syl |
|
80 |
79
|
adantr |
|
81 |
62 80
|
jca |
|
82 |
2 1 9 5
|
matvscl |
|
83 |
81 82
|
syldan |
|
84 |
1 9
|
eqmat |
|
85 |
76 83 84
|
syl2anc |
|
86 |
67 85
|
mpbird |
|
87 |
45 86
|
eqtrd |
|
88 |
39 87
|
eqtrd |
|
89 |
25 88
|
eqtrd |
|