Metamath Proof Explorer


Theorem dmatid

Description: The identity matrix is a diagonal matrix. (Contributed by AV, 19-Aug-2019) (Revised by AV, 18-Dec-2019)

Ref Expression
Hypotheses dmatid.a A = N Mat R
dmatid.b B = Base A
dmatid.0 0 ˙ = 0 R
dmatid.d D = N DMat R
Assertion dmatid N Fin R Ring 1 A D

Proof

Step Hyp Ref Expression
1 dmatid.a A = N Mat R
2 dmatid.b B = Base A
3 dmatid.0 0 ˙ = 0 R
4 dmatid.d D = N DMat R
5 1 matring N Fin R Ring A Ring
6 eqid 1 A = 1 A
7 2 6 ringidcl A Ring 1 A B
8 5 7 syl N Fin R Ring 1 A B
9 eqid 1 R = 1 R
10 simpl N Fin R Ring N Fin
11 10 adantr N Fin R Ring i N j N N Fin
12 simpr N Fin R Ring R Ring
13 12 adantr N Fin R Ring i N j N R Ring
14 simpl i N j N i N
15 14 adantl N Fin R Ring i N j N i N
16 simpr i N j N j N
17 16 adantl N Fin R Ring i N j N j N
18 1 9 3 11 13 15 17 6 mat1ov N Fin R Ring i N j N i 1 A j = if i = j 1 R 0 ˙
19 ifnefalse i j if i = j 1 R 0 ˙ = 0 ˙
20 18 19 sylan9eq N Fin R Ring i N j N i j i 1 A j = 0 ˙
21 20 ex N Fin R Ring i N j N i j i 1 A j = 0 ˙
22 21 ralrimivva N Fin R Ring i N j N i j i 1 A j = 0 ˙
23 1 2 3 4 dmatel N Fin R Ring 1 A D 1 A B i N j N i j i 1 A j = 0 ˙
24 8 22 23 mpbir2and N Fin R Ring 1 A D