Metamath Proof Explorer


Theorem dmatelnd

Description: An extradiagonal entry of a diagonal matrix is equal to zero. (Contributed by AV, 19-Aug-2019) (Revised by AV, 18-Dec-2019)

Ref Expression
Hypotheses dmatid.a A=NMatR
dmatid.b B=BaseA
dmatid.0 0˙=0R
dmatid.d D=NDMatR
Assertion dmatelnd NFinRRingXDINJNIJIXJ=0˙

Proof

Step Hyp Ref Expression
1 dmatid.a A=NMatR
2 dmatid.b B=BaseA
3 dmatid.0 0˙=0R
4 dmatid.d D=NDMatR
5 1 2 3 4 dmatel NFinRRingXDXBiNjNijiXj=0˙
6 neeq1 i=IijIj
7 oveq1 i=IiXj=IXj
8 7 eqeq1d i=IiXj=0˙IXj=0˙
9 6 8 imbi12d i=IijiXj=0˙IjIXj=0˙
10 neeq2 j=JIjIJ
11 oveq2 j=JIXj=IXJ
12 11 eqeq1d j=JIXj=0˙IXJ=0˙
13 10 12 imbi12d j=JIjIXj=0˙IJIXJ=0˙
14 9 13 rspc2v INJNiNjNijiXj=0˙IJIXJ=0˙
15 14 com23 INJNIJiNjNijiXj=0˙IXJ=0˙
16 15 3impia INJNIJiNjNijiXj=0˙IXJ=0˙
17 16 com12 iNjNijiXj=0˙INJNIJIXJ=0˙
18 17 2a1i NFinRRingXBiNjNijiXj=0˙INJNIJIXJ=0˙
19 18 impd NFinRRingXBiNjNijiXj=0˙INJNIJIXJ=0˙
20 5 19 sylbid NFinRRingXDINJNIJIXJ=0˙
21 20 3impia NFinRRingXDINJNIJIXJ=0˙
22 21 imp NFinRRingXDINJNIJIXJ=0˙