Description: An extradiagonal entry of a diagonal matrix is equal to zero. (Contributed by AV, 19-Aug-2019) (Revised by AV, 18-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dmatid.a | |
|
dmatid.b | |
||
dmatid.0 | |
||
dmatid.d | |
||
Assertion | dmatelnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmatid.a | |
|
2 | dmatid.b | |
|
3 | dmatid.0 | |
|
4 | dmatid.d | |
|
5 | 1 2 3 4 | dmatel | |
6 | neeq1 | |
|
7 | oveq1 | |
|
8 | 7 | eqeq1d | |
9 | 6 8 | imbi12d | |
10 | neeq2 | |
|
11 | oveq2 | |
|
12 | 11 | eqeq1d | |
13 | 10 12 | imbi12d | |
14 | 9 13 | rspc2v | |
15 | 14 | com23 | |
16 | 15 | 3impia | |
17 | 16 | com12 | |
18 | 17 | 2a1i | |
19 | 18 | impd | |
20 | 5 19 | sylbid | |
21 | 20 | 3impia | |
22 | 21 | imp | |