| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmatid.a |  | 
						
							| 2 |  | dmatid.b |  | 
						
							| 3 |  | dmatid.0 |  | 
						
							| 4 |  | dmatid.d |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 1 5 | matmulr |  | 
						
							| 7 | 6 | adantr |  | 
						
							| 8 | 7 | eqcomd |  | 
						
							| 9 | 8 | oveqd |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | simplr |  | 
						
							| 13 |  | simpll |  | 
						
							| 14 | 1 2 3 4 | dmatmat |  | 
						
							| 15 | 14 | imp |  | 
						
							| 16 | 1 10 2 | matbas2i |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 | 17 | adantrr |  | 
						
							| 19 | 1 2 3 4 | dmatmat |  | 
						
							| 20 | 19 | imp |  | 
						
							| 21 | 1 10 2 | matbas2i |  | 
						
							| 22 | 20 21 | syl |  | 
						
							| 23 | 22 | adantrl |  | 
						
							| 24 | 5 10 11 12 13 13 13 18 23 | mamuval |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 |  | ringcmn |  | 
						
							| 27 | 26 | ad2antlr |  | 
						
							| 28 | 27 | 3ad2ant1 |  | 
						
							| 29 | 28 | adantl |  | 
						
							| 30 | 13 | 3ad2ant1 |  | 
						
							| 31 | 30 | adantl |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 |  | ovexd |  | 
						
							| 34 |  | fvexd |  | 
						
							| 35 | 32 31 33 34 | fsuppmptdm |  | 
						
							| 36 | 12 | 3ad2ant1 |  | 
						
							| 37 | 36 | ad2antlr |  | 
						
							| 38 |  | simp2 |  | 
						
							| 39 | 38 | ad2antlr |  | 
						
							| 40 |  | simpr |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 | 1 41 3 4 | dmatmat |  | 
						
							| 43 | 42 | imp |  | 
						
							| 44 | 43 | adantrr |  | 
						
							| 45 | 44 | 3ad2ant1 |  | 
						
							| 46 | 45 | ad2antlr |  | 
						
							| 47 | 1 10 | matecl |  | 
						
							| 48 | 39 40 46 47 | syl3anc |  | 
						
							| 49 |  | simplr3 |  | 
						
							| 50 | 1 41 3 4 | dmatmat |  | 
						
							| 51 | 50 | imp |  | 
						
							| 52 | 51 | adantrl |  | 
						
							| 53 | 52 | 3ad2ant1 |  | 
						
							| 54 | 53 | ad2antlr |  | 
						
							| 55 | 1 10 | matecl |  | 
						
							| 56 | 40 49 54 55 | syl3anc |  | 
						
							| 57 | 10 11 | ringcl |  | 
						
							| 58 | 37 48 56 57 | syl3anc |  | 
						
							| 59 | 38 | adantl |  | 
						
							| 60 |  | simp3 |  | 
						
							| 61 | 15 | adantrr |  | 
						
							| 62 | 61 2 | eleqtrdi |  | 
						
							| 63 | 62 | 3ad2ant1 |  | 
						
							| 64 | 1 10 | matecl |  | 
						
							| 65 | 38 60 63 64 | syl3anc |  | 
						
							| 66 | 50 | a1d |  | 
						
							| 67 | 66 | imp32 |  | 
						
							| 68 | 67 | 3ad2ant1 |  | 
						
							| 69 | 1 10 | matecl |  | 
						
							| 70 | 38 60 68 69 | syl3anc |  | 
						
							| 71 | 10 11 | ringcl |  | 
						
							| 72 | 36 65 70 71 | syl3anc |  | 
						
							| 73 | 72 | adantl |  | 
						
							| 74 |  | eqtr |  | 
						
							| 75 | 74 | ancoms |  | 
						
							| 76 | 75 | oveq2d |  | 
						
							| 77 | 76 | adantlr |  | 
						
							| 78 |  | oveq1 |  | 
						
							| 79 | 78 | adantl |  | 
						
							| 80 | 77 79 | oveq12d |  | 
						
							| 81 | 10 25 29 31 35 58 59 73 80 | gsumdifsnd |  | 
						
							| 82 |  | simprl |  | 
						
							| 83 | 13 12 82 | 3jca |  | 
						
							| 84 | 83 | 3ad2ant1 |  | 
						
							| 85 | 84 | ad2antlr |  | 
						
							| 86 | 38 | ad2antlr |  | 
						
							| 87 |  | eldifi |  | 
						
							| 88 | 87 | adantl |  | 
						
							| 89 |  | eldifsni |  | 
						
							| 90 | 89 | necomd |  | 
						
							| 91 | 90 | adantl |  | 
						
							| 92 | 1 2 3 4 | dmatelnd |  | 
						
							| 93 | 85 86 88 91 92 | syl13anc |  | 
						
							| 94 | 93 | oveq1d |  | 
						
							| 95 | 36 | ad2antlr |  | 
						
							| 96 |  | simplr3 |  | 
						
							| 97 | 53 | ad2antlr |  | 
						
							| 98 | 88 96 97 55 | syl3anc |  | 
						
							| 99 | 10 11 3 | ringlz |  | 
						
							| 100 | 95 98 99 | syl2anc |  | 
						
							| 101 | 94 100 | eqtrd |  | 
						
							| 102 | 101 | mpteq2dva |  | 
						
							| 103 | 102 | oveq2d |  | 
						
							| 104 |  | diffi |  | 
						
							| 105 |  | ringmnd |  | 
						
							| 106 | 104 105 | anim12ci |  | 
						
							| 107 | 106 | adantr |  | 
						
							| 108 | 107 | 3ad2ant1 |  | 
						
							| 109 | 108 | adantl |  | 
						
							| 110 | 3 | gsumz |  | 
						
							| 111 | 109 110 | syl |  | 
						
							| 112 | 103 111 | eqtrd |  | 
						
							| 113 | 112 | oveq1d |  | 
						
							| 114 | 105 | ad2antlr |  | 
						
							| 115 | 114 | 3ad2ant1 |  | 
						
							| 116 | 38 60 53 69 | syl3anc |  | 
						
							| 117 | 36 65 116 71 | syl3anc |  | 
						
							| 118 | 115 117 | jca |  | 
						
							| 119 | 118 | adantl |  | 
						
							| 120 | 10 25 3 | mndlid |  | 
						
							| 121 | 119 120 | syl |  | 
						
							| 122 | 81 113 121 | 3eqtrd |  | 
						
							| 123 |  | iftrue |  | 
						
							| 124 | 123 | adantr |  | 
						
							| 125 | 122 124 | eqtr4d |  | 
						
							| 126 |  | simprr |  | 
						
							| 127 | 13 12 126 | 3jca |  | 
						
							| 128 | 127 | 3ad2ant1 |  | 
						
							| 129 | 128 | ad2antlr |  | 
						
							| 130 | 129 | adantl |  | 
						
							| 131 |  | simprr |  | 
						
							| 132 |  | simplr3 |  | 
						
							| 133 | 132 | adantl |  | 
						
							| 134 |  | df-ne |  | 
						
							| 135 |  | neeq1 |  | 
						
							| 136 | 135 | biimpcd |  | 
						
							| 137 | 134 136 | sylbir |  | 
						
							| 138 | 137 | adantr |  | 
						
							| 139 | 138 | adantr |  | 
						
							| 140 | 139 | impcom |  | 
						
							| 141 | 1 2 3 4 | dmatelnd |  | 
						
							| 142 | 130 131 133 140 141 | syl13anc |  | 
						
							| 143 | 142 | oveq2d |  | 
						
							| 144 | 36 | ad2antlr |  | 
						
							| 145 | 38 | ad2antlr |  | 
						
							| 146 |  | simpr |  | 
						
							| 147 | 63 | ad2antlr |  | 
						
							| 148 | 145 146 147 47 | syl3anc |  | 
						
							| 149 | 10 11 3 | ringrz |  | 
						
							| 150 | 144 148 149 | syl2anc |  | 
						
							| 151 | 150 | adantl |  | 
						
							| 152 | 143 151 | eqtrd |  | 
						
							| 153 | 84 | ad2antlr |  | 
						
							| 154 | 153 | adantl |  | 
						
							| 155 | 145 | adantl |  | 
						
							| 156 |  | simprr |  | 
						
							| 157 |  | neqne |  | 
						
							| 158 | 157 | adantr |  | 
						
							| 159 | 154 155 156 158 92 | syl13anc |  | 
						
							| 160 | 159 | oveq1d |  | 
						
							| 161 | 68 | ad2antlr |  | 
						
							| 162 | 146 132 161 55 | syl3anc |  | 
						
							| 163 | 144 162 99 | syl2anc |  | 
						
							| 164 | 163 | adantl |  | 
						
							| 165 | 160 164 | eqtrd |  | 
						
							| 166 | 152 165 | pm2.61ian |  | 
						
							| 167 | 166 | mpteq2dva |  | 
						
							| 168 | 167 | oveq2d |  | 
						
							| 169 | 105 | anim2i |  | 
						
							| 170 | 169 | ancomd |  | 
						
							| 171 | 3 | gsumz |  | 
						
							| 172 | 170 171 | syl |  | 
						
							| 173 | 172 | adantr |  | 
						
							| 174 | 173 | 3ad2ant1 |  | 
						
							| 175 | 174 | adantl |  | 
						
							| 176 |  | iffalse |  | 
						
							| 177 | 176 | eqcomd |  | 
						
							| 178 | 177 | adantr |  | 
						
							| 179 | 168 175 178 | 3eqtrd |  | 
						
							| 180 | 125 179 | pm2.61ian |  | 
						
							| 181 | 180 | mpoeq3dva |  | 
						
							| 182 | 9 24 181 | 3eqtrd |  |