Metamath Proof Explorer


Theorem dmatmat

Description: An N x N diagonal matrix over (the ring) R is an N x N matrix over (the ring) R . (Contributed by AV, 18-Dec-2019)

Ref Expression
Hypotheses dmatval.a A=NMatR
dmatval.b B=BaseA
dmatval.0 0˙=0R
dmatval.d D=NDMatR
Assertion dmatmat NFinRVMDMB

Proof

Step Hyp Ref Expression
1 dmatval.a A=NMatR
2 dmatval.b B=BaseA
3 dmatval.0 0˙=0R
4 dmatval.d D=NDMatR
5 1 2 3 4 dmatel NFinRVMDMBiNjNijiMj=0˙
6 simpl MBiNjNijiMj=0˙MB
7 5 6 syl6bi NFinRVMDMB