| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmatid.a |
|- A = ( N Mat R ) |
| 2 |
|
dmatid.b |
|- B = ( Base ` A ) |
| 3 |
|
dmatid.0 |
|- .0. = ( 0g ` R ) |
| 4 |
|
dmatid.d |
|- D = ( N DMat R ) |
| 5 |
1 2 3 4
|
dmatel |
|- ( ( N e. Fin /\ R e. Ring ) -> ( X e. D <-> ( X e. B /\ A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) ) ) ) |
| 6 |
|
neeq1 |
|- ( i = I -> ( i =/= j <-> I =/= j ) ) |
| 7 |
|
oveq1 |
|- ( i = I -> ( i X j ) = ( I X j ) ) |
| 8 |
7
|
eqeq1d |
|- ( i = I -> ( ( i X j ) = .0. <-> ( I X j ) = .0. ) ) |
| 9 |
6 8
|
imbi12d |
|- ( i = I -> ( ( i =/= j -> ( i X j ) = .0. ) <-> ( I =/= j -> ( I X j ) = .0. ) ) ) |
| 10 |
|
neeq2 |
|- ( j = J -> ( I =/= j <-> I =/= J ) ) |
| 11 |
|
oveq2 |
|- ( j = J -> ( I X j ) = ( I X J ) ) |
| 12 |
11
|
eqeq1d |
|- ( j = J -> ( ( I X j ) = .0. <-> ( I X J ) = .0. ) ) |
| 13 |
10 12
|
imbi12d |
|- ( j = J -> ( ( I =/= j -> ( I X j ) = .0. ) <-> ( I =/= J -> ( I X J ) = .0. ) ) ) |
| 14 |
9 13
|
rspc2v |
|- ( ( I e. N /\ J e. N ) -> ( A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) -> ( I =/= J -> ( I X J ) = .0. ) ) ) |
| 15 |
14
|
com23 |
|- ( ( I e. N /\ J e. N ) -> ( I =/= J -> ( A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) -> ( I X J ) = .0. ) ) ) |
| 16 |
15
|
3impia |
|- ( ( I e. N /\ J e. N /\ I =/= J ) -> ( A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) -> ( I X J ) = .0. ) ) |
| 17 |
16
|
com12 |
|- ( A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) -> ( ( I e. N /\ J e. N /\ I =/= J ) -> ( I X J ) = .0. ) ) |
| 18 |
17
|
2a1i |
|- ( ( N e. Fin /\ R e. Ring ) -> ( X e. B -> ( A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) -> ( ( I e. N /\ J e. N /\ I =/= J ) -> ( I X J ) = .0. ) ) ) ) |
| 19 |
18
|
impd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( X e. B /\ A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) ) -> ( ( I e. N /\ J e. N /\ I =/= J ) -> ( I X J ) = .0. ) ) ) |
| 20 |
5 19
|
sylbid |
|- ( ( N e. Fin /\ R e. Ring ) -> ( X e. D -> ( ( I e. N /\ J e. N /\ I =/= J ) -> ( I X J ) = .0. ) ) ) |
| 21 |
20
|
3impia |
|- ( ( N e. Fin /\ R e. Ring /\ X e. D ) -> ( ( I e. N /\ J e. N /\ I =/= J ) -> ( I X J ) = .0. ) ) |
| 22 |
21
|
imp |
|- ( ( ( N e. Fin /\ R e. Ring /\ X e. D ) /\ ( I e. N /\ J e. N /\ I =/= J ) ) -> ( I X J ) = .0. ) |