| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmatid.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | dmatid.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | dmatid.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | dmatid.d |  |-  D = ( N DMat R ) | 
						
							| 5 | 1 2 3 4 | dmatel |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( X e. D <-> ( X e. B /\ A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) ) ) ) | 
						
							| 6 |  | neeq1 |  |-  ( i = I -> ( i =/= j <-> I =/= j ) ) | 
						
							| 7 |  | oveq1 |  |-  ( i = I -> ( i X j ) = ( I X j ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( i = I -> ( ( i X j ) = .0. <-> ( I X j ) = .0. ) ) | 
						
							| 9 | 6 8 | imbi12d |  |-  ( i = I -> ( ( i =/= j -> ( i X j ) = .0. ) <-> ( I =/= j -> ( I X j ) = .0. ) ) ) | 
						
							| 10 |  | neeq2 |  |-  ( j = J -> ( I =/= j <-> I =/= J ) ) | 
						
							| 11 |  | oveq2 |  |-  ( j = J -> ( I X j ) = ( I X J ) ) | 
						
							| 12 | 11 | eqeq1d |  |-  ( j = J -> ( ( I X j ) = .0. <-> ( I X J ) = .0. ) ) | 
						
							| 13 | 10 12 | imbi12d |  |-  ( j = J -> ( ( I =/= j -> ( I X j ) = .0. ) <-> ( I =/= J -> ( I X J ) = .0. ) ) ) | 
						
							| 14 | 9 13 | rspc2v |  |-  ( ( I e. N /\ J e. N ) -> ( A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) -> ( I =/= J -> ( I X J ) = .0. ) ) ) | 
						
							| 15 | 14 | com23 |  |-  ( ( I e. N /\ J e. N ) -> ( I =/= J -> ( A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) -> ( I X J ) = .0. ) ) ) | 
						
							| 16 | 15 | 3impia |  |-  ( ( I e. N /\ J e. N /\ I =/= J ) -> ( A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) -> ( I X J ) = .0. ) ) | 
						
							| 17 | 16 | com12 |  |-  ( A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) -> ( ( I e. N /\ J e. N /\ I =/= J ) -> ( I X J ) = .0. ) ) | 
						
							| 18 | 17 | 2a1i |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( X e. B -> ( A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) -> ( ( I e. N /\ J e. N /\ I =/= J ) -> ( I X J ) = .0. ) ) ) ) | 
						
							| 19 | 18 | impd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( ( X e. B /\ A. i e. N A. j e. N ( i =/= j -> ( i X j ) = .0. ) ) -> ( ( I e. N /\ J e. N /\ I =/= J ) -> ( I X J ) = .0. ) ) ) | 
						
							| 20 | 5 19 | sylbid |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( X e. D -> ( ( I e. N /\ J e. N /\ I =/= J ) -> ( I X J ) = .0. ) ) ) | 
						
							| 21 | 20 | 3impia |  |-  ( ( N e. Fin /\ R e. Ring /\ X e. D ) -> ( ( I e. N /\ J e. N /\ I =/= J ) -> ( I X J ) = .0. ) ) | 
						
							| 22 | 21 | imp |  |-  ( ( ( N e. Fin /\ R e. Ring /\ X e. D ) /\ ( I e. N /\ J e. N /\ I =/= J ) ) -> ( I X J ) = .0. ) |