| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmatid.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | dmatid.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | dmatid.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | dmatid.d | ⊢ 𝐷  =  ( 𝑁  DMat  𝑅 ) | 
						
							| 5 | 1 2 3 4 | dmatel | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑋  ∈  𝐷  ↔  ( 𝑋  ∈  𝐵  ∧  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑋 𝑗 )  =   0  ) ) ) ) | 
						
							| 6 |  | neeq1 | ⊢ ( 𝑖  =  𝐼  →  ( 𝑖  ≠  𝑗  ↔  𝐼  ≠  𝑗 ) ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑖  =  𝐼  →  ( 𝑖 𝑋 𝑗 )  =  ( 𝐼 𝑋 𝑗 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑖  =  𝐼  →  ( ( 𝑖 𝑋 𝑗 )  =   0   ↔  ( 𝐼 𝑋 𝑗 )  =   0  ) ) | 
						
							| 9 | 6 8 | imbi12d | ⊢ ( 𝑖  =  𝐼  →  ( ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑋 𝑗 )  =   0  )  ↔  ( 𝐼  ≠  𝑗  →  ( 𝐼 𝑋 𝑗 )  =   0  ) ) ) | 
						
							| 10 |  | neeq2 | ⊢ ( 𝑗  =  𝐽  →  ( 𝐼  ≠  𝑗  ↔  𝐼  ≠  𝐽 ) ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑗  =  𝐽  →  ( 𝐼 𝑋 𝑗 )  =  ( 𝐼 𝑋 𝐽 ) ) | 
						
							| 12 | 11 | eqeq1d | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝐼 𝑋 𝑗 )  =   0   ↔  ( 𝐼 𝑋 𝐽 )  =   0  ) ) | 
						
							| 13 | 10 12 | imbi12d | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝐼  ≠  𝑗  →  ( 𝐼 𝑋 𝑗 )  =   0  )  ↔  ( 𝐼  ≠  𝐽  →  ( 𝐼 𝑋 𝐽 )  =   0  ) ) ) | 
						
							| 14 | 9 13 | rspc2v | ⊢ ( ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁 )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑋 𝑗 )  =   0  )  →  ( 𝐼  ≠  𝐽  →  ( 𝐼 𝑋 𝐽 )  =   0  ) ) ) | 
						
							| 15 | 14 | com23 | ⊢ ( ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁 )  →  ( 𝐼  ≠  𝐽  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑋 𝑗 )  =   0  )  →  ( 𝐼 𝑋 𝐽 )  =   0  ) ) ) | 
						
							| 16 | 15 | 3impia | ⊢ ( ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁  ∧  𝐼  ≠  𝐽 )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑋 𝑗 )  =   0  )  →  ( 𝐼 𝑋 𝐽 )  =   0  ) ) | 
						
							| 17 | 16 | com12 | ⊢ ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑋 𝑗 )  =   0  )  →  ( ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁  ∧  𝐼  ≠  𝐽 )  →  ( 𝐼 𝑋 𝐽 )  =   0  ) ) | 
						
							| 18 | 17 | 2a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑋  ∈  𝐵  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑋 𝑗 )  =   0  )  →  ( ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁  ∧  𝐼  ≠  𝐽 )  →  ( 𝐼 𝑋 𝐽 )  =   0  ) ) ) ) | 
						
							| 19 | 18 | impd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ( 𝑋  ∈  𝐵  ∧  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑋 𝑗 )  =   0  ) )  →  ( ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁  ∧  𝐼  ≠  𝐽 )  →  ( 𝐼 𝑋 𝐽 )  =   0  ) ) ) | 
						
							| 20 | 5 19 | sylbid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑋  ∈  𝐷  →  ( ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁  ∧  𝐼  ≠  𝐽 )  →  ( 𝐼 𝑋 𝐽 )  =   0  ) ) ) | 
						
							| 21 | 20 | 3impia | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑋  ∈  𝐷 )  →  ( ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁  ∧  𝐼  ≠  𝐽 )  →  ( 𝐼 𝑋 𝐽 )  =   0  ) ) | 
						
							| 22 | 21 | imp | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑋  ∈  𝐷 )  ∧  ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁  ∧  𝐼  ≠  𝐽 ) )  →  ( 𝐼 𝑋 𝐽 )  =   0  ) |