| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmatval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | dmatval.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | dmatval.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | dmatval.d | ⊢ 𝐷  =  ( 𝑁  DMat  𝑅 ) | 
						
							| 5 | 1 2 3 4 | dmatval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  𝐷  =  { 𝑚  ∈  𝐵  ∣  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  ) } ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  ( 𝑀  ∈  𝐷  ↔  𝑀  ∈  { 𝑚  ∈  𝐵  ∣  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  ) } ) ) | 
						
							| 7 |  | oveq | ⊢ ( 𝑚  =  𝑀  →  ( 𝑖 𝑚 𝑗 )  =  ( 𝑖 𝑀 𝑗 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑚  =  𝑀  →  ( ( 𝑖 𝑚 𝑗 )  =   0   ↔  ( 𝑖 𝑀 𝑗 )  =   0  ) ) | 
						
							| 9 | 8 | imbi2d | ⊢ ( 𝑚  =  𝑀  →  ( ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  )  ↔  ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑀 𝑗 )  =   0  ) ) ) | 
						
							| 10 | 9 | 2ralbidv | ⊢ ( 𝑚  =  𝑀  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  )  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑀 𝑗 )  =   0  ) ) ) | 
						
							| 11 | 10 | elrab | ⊢ ( 𝑀  ∈  { 𝑚  ∈  𝐵  ∣  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑚 𝑗 )  =   0  ) }  ↔  ( 𝑀  ∈  𝐵  ∧  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑀 𝑗 )  =   0  ) ) ) | 
						
							| 12 | 6 11 | bitrdi | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  ( 𝑀  ∈  𝐷  ↔  ( 𝑀  ∈  𝐵  ∧  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖  ≠  𝑗  →  ( 𝑖 𝑀 𝑗 )  =   0  ) ) ) ) |