Description: Write a scalar matrix over polynomials (over a commutative ring) as a sum of the product of variable powers and constant scalar matrices with scalar entries. (Contributed by AV, 2-Nov-2019) (Revised by AV, 4-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmatcollpwscmat.p | |
|
pmatcollpwscmat.c | |
||
pmatcollpwscmat.b | |
||
pmatcollpwscmat.m1 | |
||
pmatcollpwscmat.e1 | |
||
pmatcollpwscmat.x | |
||
pmatcollpwscmat.t | |
||
pmatcollpwscmat.a | |
||
pmatcollpwscmat.d | |
||
pmatcollpwscmat.u | |
||
pmatcollpwscmat.k | |
||
pmatcollpwscmat.e2 | |
||
pmatcollpwscmat.s | |
||
pmatcollpwscmat.1 | |
||
pmatcollpwscmat.m2 | |
||
Assertion | pmatcollpwscmat | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmatcollpwscmat.p | |
|
2 | pmatcollpwscmat.c | |
|
3 | pmatcollpwscmat.b | |
|
4 | pmatcollpwscmat.m1 | |
|
5 | pmatcollpwscmat.e1 | |
|
6 | pmatcollpwscmat.x | |
|
7 | pmatcollpwscmat.t | |
|
8 | pmatcollpwscmat.a | |
|
9 | pmatcollpwscmat.d | |
|
10 | pmatcollpwscmat.u | |
|
11 | pmatcollpwscmat.k | |
|
12 | pmatcollpwscmat.e2 | |
|
13 | pmatcollpwscmat.s | |
|
14 | pmatcollpwscmat.1 | |
|
15 | pmatcollpwscmat.m2 | |
|
16 | crngring | |
|
17 | 1 2 3 12 4 14 | 1pmatscmul | |
18 | 15 17 | eqeltrid | |
19 | 16 18 | syl3an2 | |
20 | 1 2 3 4 5 6 7 | pmatcollpw | |
21 | 19 20 | syld3an3 | |
22 | 16 | anim2i | |
23 | 22 | 3adant3 | |
24 | simp3 | |
|
25 | 24 | anim1ci | |
26 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | pmatcollpwscmatlem2 | |
27 | 23 25 26 | syl2an2r | |
28 | 27 | oveq2d | |
29 | 28 | mpteq2dva | |
30 | 29 | oveq2d | |
31 | 21 30 | eqtrd | |