| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpwscmat.p |  | 
						
							| 2 |  | pmatcollpwscmat.c |  | 
						
							| 3 |  | pmatcollpwscmat.b |  | 
						
							| 4 |  | pmatcollpwscmat.m1 |  | 
						
							| 5 |  | pmatcollpwscmat.e1 |  | 
						
							| 6 |  | pmatcollpwscmat.x |  | 
						
							| 7 |  | pmatcollpwscmat.t |  | 
						
							| 8 |  | pmatcollpwscmat.a |  | 
						
							| 9 |  | pmatcollpwscmat.d |  | 
						
							| 10 |  | pmatcollpwscmat.u |  | 
						
							| 11 |  | pmatcollpwscmat.k |  | 
						
							| 12 |  | pmatcollpwscmat.e2 |  | 
						
							| 13 |  | pmatcollpwscmat.s |  | 
						
							| 14 |  | pmatcollpwscmat.1 |  | 
						
							| 15 |  | pmatcollpwscmat.m2 |  | 
						
							| 16 |  | crngring |  | 
						
							| 17 | 1 2 3 12 4 14 | 1pmatscmul |  | 
						
							| 18 | 15 17 | eqeltrid |  | 
						
							| 19 | 16 18 | syl3an2 |  | 
						
							| 20 | 1 2 3 4 5 6 7 | pmatcollpw |  | 
						
							| 21 | 19 20 | syld3an3 |  | 
						
							| 22 | 16 | anim2i |  | 
						
							| 23 | 22 | 3adant3 |  | 
						
							| 24 |  | simp3 |  | 
						
							| 25 | 24 | anim1ci |  | 
						
							| 26 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | pmatcollpwscmatlem2 |  | 
						
							| 27 | 23 25 26 | syl2an2r |  | 
						
							| 28 | 27 | oveq2d |  | 
						
							| 29 | 28 | mpteq2dva |  | 
						
							| 30 | 29 | oveq2d |  | 
						
							| 31 | 21 30 | eqtrd |  |