Metamath Proof Explorer


Theorem pmatcollpwscmat

Description: Write a scalar matrix over polynomials (over a commutative ring) as a sum of the product of variable powers and constant scalar matrices with scalar entries. (Contributed by AV, 2-Nov-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pmatcollpwscmat.p P=Poly1R
pmatcollpwscmat.c C=NMatP
pmatcollpwscmat.b B=BaseC
pmatcollpwscmat.m1 ˙=C
pmatcollpwscmat.e1 ×˙=mulGrpP
pmatcollpwscmat.x X=var1R
pmatcollpwscmat.t T=NmatToPolyMatR
pmatcollpwscmat.a A=NMatR
pmatcollpwscmat.d D=BaseA
pmatcollpwscmat.u U=algScP
pmatcollpwscmat.k K=BaseR
pmatcollpwscmat.e2 E=BaseP
pmatcollpwscmat.s S=algScP
pmatcollpwscmat.1 1˙=1C
pmatcollpwscmat.m2 M=Q˙1˙
Assertion pmatcollpwscmat NFinRCRingQEM=Cn0n×˙X˙Ucoe1Qn˙1˙

Proof

Step Hyp Ref Expression
1 pmatcollpwscmat.p P=Poly1R
2 pmatcollpwscmat.c C=NMatP
3 pmatcollpwscmat.b B=BaseC
4 pmatcollpwscmat.m1 ˙=C
5 pmatcollpwscmat.e1 ×˙=mulGrpP
6 pmatcollpwscmat.x X=var1R
7 pmatcollpwscmat.t T=NmatToPolyMatR
8 pmatcollpwscmat.a A=NMatR
9 pmatcollpwscmat.d D=BaseA
10 pmatcollpwscmat.u U=algScP
11 pmatcollpwscmat.k K=BaseR
12 pmatcollpwscmat.e2 E=BaseP
13 pmatcollpwscmat.s S=algScP
14 pmatcollpwscmat.1 1˙=1C
15 pmatcollpwscmat.m2 M=Q˙1˙
16 crngring RCRingRRing
17 1 2 3 12 4 14 1pmatscmul NFinRRingQEQ˙1˙B
18 15 17 eqeltrid NFinRRingQEMB
19 16 18 syl3an2 NFinRCRingQEMB
20 1 2 3 4 5 6 7 pmatcollpw NFinRCRingMBM=Cn0n×˙X˙TMdecompPMatn
21 19 20 syld3an3 NFinRCRingQEM=Cn0n×˙X˙TMdecompPMatn
22 16 anim2i NFinRCRingNFinRRing
23 22 3adant3 NFinRCRingQENFinRRing
24 simp3 NFinRCRingQEQE
25 24 anim1ci NFinRCRingQEn0n0QE
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pmatcollpwscmatlem2 NFinRRingn0QETMdecompPMatn=Ucoe1Qn˙1˙
27 23 25 26 syl2an2r NFinRCRingQEn0TMdecompPMatn=Ucoe1Qn˙1˙
28 27 oveq2d NFinRCRingQEn0n×˙X˙TMdecompPMatn=n×˙X˙Ucoe1Qn˙1˙
29 28 mpteq2dva NFinRCRingQEn0n×˙X˙TMdecompPMatn=n0n×˙X˙Ucoe1Qn˙1˙
30 29 oveq2d NFinRCRingQECn0n×˙X˙TMdecompPMatn=Cn0n×˙X˙Ucoe1Qn˙1˙
31 21 30 eqtrd NFinRCRingQEM=Cn0n×˙X˙Ucoe1Qn˙1˙