Description: Lemma 1 for pmatcollpwscmat . (Contributed by AV, 2-Nov-2019) (Revised by AV, 4-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmatcollpwscmat.p | |
|
pmatcollpwscmat.c | |
||
pmatcollpwscmat.b | |
||
pmatcollpwscmat.m1 | |
||
pmatcollpwscmat.e1 | |
||
pmatcollpwscmat.x | |
||
pmatcollpwscmat.t | |
||
pmatcollpwscmat.a | |
||
pmatcollpwscmat.d | |
||
pmatcollpwscmat.u | |
||
pmatcollpwscmat.k | |
||
pmatcollpwscmat.e2 | |
||
pmatcollpwscmat.s | |
||
pmatcollpwscmat.1 | |
||
pmatcollpwscmat.m2 | |
||
Assertion | pmatcollpwscmatlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmatcollpwscmat.p | |
|
2 | pmatcollpwscmat.c | |
|
3 | pmatcollpwscmat.b | |
|
4 | pmatcollpwscmat.m1 | |
|
5 | pmatcollpwscmat.e1 | |
|
6 | pmatcollpwscmat.x | |
|
7 | pmatcollpwscmat.t | |
|
8 | pmatcollpwscmat.a | |
|
9 | pmatcollpwscmat.d | |
|
10 | pmatcollpwscmat.u | |
|
11 | pmatcollpwscmat.k | |
|
12 | pmatcollpwscmat.e2 | |
|
13 | pmatcollpwscmat.s | |
|
14 | pmatcollpwscmat.1 | |
|
15 | pmatcollpwscmat.m2 | |
|
16 | 15 | oveqi | |
17 | 1 | ply1ring | |
18 | 17 | anim2i | |
19 | simpr | |
|
20 | 18 19 | anim12i | |
21 | df-3an | |
|
22 | 20 21 | sylibr | |
23 | eqid | |
|
24 | 2 12 23 14 4 | scmatscmide | |
25 | 22 24 | sylan | |
26 | 16 25 | eqtrid | |
27 | 26 | fveq2d | |
28 | 27 | fveq1d | |
29 | fvif | |
|
30 | 29 | fveq1i | |
31 | iffv | |
|
32 | 30 31 | eqtri | |
33 | 28 32 | eqtrdi | |
34 | 33 | oveq1d | |
35 | ovif | |
|
36 | eqid | |
|
37 | 1 23 36 | coe1z | |
38 | 37 | ad2antlr | |
39 | 38 | fveq1d | |
40 | fvexd | |
|
41 | simpl | |
|
42 | 40 41 | anim12i | |
43 | fvconst2g | |
|
44 | 42 43 | syl | |
45 | 39 44 | eqtrd | |
46 | 45 | oveq1d | |
47 | 1 | ply1lmod | |
48 | 47 | ad2antlr | |
49 | eqid | |
|
50 | 49 12 | mgpbas | |
51 | eqid | |
|
52 | 49 | ringmgp | |
53 | 17 52 | syl | |
54 | 0nn0 | |
|
55 | 54 | a1i | |
56 | eqid | |
|
57 | 56 1 12 | vr1cl | |
58 | 50 51 53 55 57 | mulgnn0cld | |
59 | 58 | ad2antlr | |
60 | eqid | |
|
61 | eqid | |
|
62 | eqid | |
|
63 | 12 60 61 62 23 | lmod0vs | |
64 | 48 59 63 | syl2anc | |
65 | 1 | ply1sca | |
66 | 65 | adantl | |
67 | 66 | fveq2d | |
68 | 67 | oveq1d | |
69 | 68 | eqeq1d | |
70 | 69 | adantr | |
71 | 64 70 | mpbird | |
72 | 46 71 | eqtrd | |
73 | 72 | ifeq2d | |
74 | 73 | adantr | |
75 | 35 74 | eqtrid | |
76 | simpr | |
|
77 | 76 | ancomd | |
78 | eqid | |
|
79 | 78 12 1 11 | coe1fvalcl | |
80 | 77 79 | syl | |
81 | 65 | eqcomd | |
82 | 81 | adantl | |
83 | 82 | fveq2d | |
84 | 83 11 | eqtr4di | |
85 | 84 | eleq2d | |
86 | 85 | adantr | |
87 | 80 86 | mpbird | |
88 | eqid | |
|
89 | eqid | |
|
90 | 10 60 88 61 89 | asclval | |
91 | 87 90 | syl | |
92 | 1 56 49 51 | ply1idvr1 | |
93 | 92 | eqcomd | |
94 | 93 | ad2antlr | |
95 | 94 | oveq2d | |
96 | 91 95 | eqtr2d | |
97 | 96 | ifeq1d | |
98 | 97 | adantr | |
99 | 34 75 98 | 3eqtrd | |