Metamath Proof Explorer


Theorem pmatcollpwscmatlem1

Description: Lemma 1 for pmatcollpwscmat . (Contributed by AV, 2-Nov-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pmatcollpwscmat.p P=Poly1R
pmatcollpwscmat.c C=NMatP
pmatcollpwscmat.b B=BaseC
pmatcollpwscmat.m1 ˙=C
pmatcollpwscmat.e1 ×˙=mulGrpP
pmatcollpwscmat.x X=var1R
pmatcollpwscmat.t T=NmatToPolyMatR
pmatcollpwscmat.a A=NMatR
pmatcollpwscmat.d D=BaseA
pmatcollpwscmat.u U=algScP
pmatcollpwscmat.k K=BaseR
pmatcollpwscmat.e2 E=BaseP
pmatcollpwscmat.s S=algScP
pmatcollpwscmat.1 1˙=1C
pmatcollpwscmat.m2 M=Q˙1˙
Assertion pmatcollpwscmatlem1 NFinRRingL0QEaNbNcoe1aMbLP0mulGrpPvar1R=ifa=bUcoe1QL0P

Proof

Step Hyp Ref Expression
1 pmatcollpwscmat.p P=Poly1R
2 pmatcollpwscmat.c C=NMatP
3 pmatcollpwscmat.b B=BaseC
4 pmatcollpwscmat.m1 ˙=C
5 pmatcollpwscmat.e1 ×˙=mulGrpP
6 pmatcollpwscmat.x X=var1R
7 pmatcollpwscmat.t T=NmatToPolyMatR
8 pmatcollpwscmat.a A=NMatR
9 pmatcollpwscmat.d D=BaseA
10 pmatcollpwscmat.u U=algScP
11 pmatcollpwscmat.k K=BaseR
12 pmatcollpwscmat.e2 E=BaseP
13 pmatcollpwscmat.s S=algScP
14 pmatcollpwscmat.1 1˙=1C
15 pmatcollpwscmat.m2 M=Q˙1˙
16 15 oveqi aMb=aQ˙1˙b
17 1 ply1ring RRingPRing
18 17 anim2i NFinRRingNFinPRing
19 simpr L0QEQE
20 18 19 anim12i NFinRRingL0QENFinPRingQE
21 df-3an NFinPRingQENFinPRingQE
22 20 21 sylibr NFinRRingL0QENFinPRingQE
23 eqid 0P=0P
24 2 12 23 14 4 scmatscmide NFinPRingQEaNbNaQ˙1˙b=ifa=bQ0P
25 22 24 sylan NFinRRingL0QEaNbNaQ˙1˙b=ifa=bQ0P
26 16 25 eqtrid NFinRRingL0QEaNbNaMb=ifa=bQ0P
27 26 fveq2d NFinRRingL0QEaNbNcoe1aMb=coe1ifa=bQ0P
28 27 fveq1d NFinRRingL0QEaNbNcoe1aMbL=coe1ifa=bQ0PL
29 fvif coe1ifa=bQ0P=ifa=bcoe1Qcoe10P
30 29 fveq1i coe1ifa=bQ0PL=ifa=bcoe1Qcoe10PL
31 iffv ifa=bcoe1Qcoe10PL=ifa=bcoe1QLcoe10PL
32 30 31 eqtri coe1ifa=bQ0PL=ifa=bcoe1QLcoe10PL
33 28 32 eqtrdi NFinRRingL0QEaNbNcoe1aMbL=ifa=bcoe1QLcoe10PL
34 33 oveq1d NFinRRingL0QEaNbNcoe1aMbLP0mulGrpPvar1R=ifa=bcoe1QLcoe10PLP0mulGrpPvar1R
35 ovif ifa=bcoe1QLcoe10PLP0mulGrpPvar1R=ifa=bcoe1QLP0mulGrpPvar1Rcoe10PLP0mulGrpPvar1R
36 eqid 0R=0R
37 1 23 36 coe1z RRingcoe10P=0×0R
38 37 ad2antlr NFinRRingL0QEcoe10P=0×0R
39 38 fveq1d NFinRRingL0QEcoe10PL=0×0RL
40 fvexd NFinRRing0RV
41 simpl L0QEL0
42 40 41 anim12i NFinRRingL0QE0RVL0
43 fvconst2g 0RVL00×0RL=0R
44 42 43 syl NFinRRingL0QE0×0RL=0R
45 39 44 eqtrd NFinRRingL0QEcoe10PL=0R
46 45 oveq1d NFinRRingL0QEcoe10PLP0mulGrpPvar1R=0RP0mulGrpPvar1R
47 1 ply1lmod RRingPLMod
48 47 ad2antlr NFinRRingL0QEPLMod
49 eqid mulGrpP=mulGrpP
50 49 12 mgpbas E=BasemulGrpP
51 eqid mulGrpP=mulGrpP
52 49 ringmgp PRingmulGrpPMnd
53 17 52 syl RRingmulGrpPMnd
54 0nn0 00
55 54 a1i RRing00
56 eqid var1R=var1R
57 56 1 12 vr1cl RRingvar1RE
58 50 51 53 55 57 mulgnn0cld RRing0mulGrpPvar1RE
59 58 ad2antlr NFinRRingL0QE0mulGrpPvar1RE
60 eqid ScalarP=ScalarP
61 eqid P=P
62 eqid 0ScalarP=0ScalarP
63 12 60 61 62 23 lmod0vs PLMod0mulGrpPvar1RE0ScalarPP0mulGrpPvar1R=0P
64 48 59 63 syl2anc NFinRRingL0QE0ScalarPP0mulGrpPvar1R=0P
65 1 ply1sca RRingR=ScalarP
66 65 adantl NFinRRingR=ScalarP
67 66 fveq2d NFinRRing0R=0ScalarP
68 67 oveq1d NFinRRing0RP0mulGrpPvar1R=0ScalarPP0mulGrpPvar1R
69 68 eqeq1d NFinRRing0RP0mulGrpPvar1R=0P0ScalarPP0mulGrpPvar1R=0P
70 69 adantr NFinRRingL0QE0RP0mulGrpPvar1R=0P0ScalarPP0mulGrpPvar1R=0P
71 64 70 mpbird NFinRRingL0QE0RP0mulGrpPvar1R=0P
72 46 71 eqtrd NFinRRingL0QEcoe10PLP0mulGrpPvar1R=0P
73 72 ifeq2d NFinRRingL0QEifa=bcoe1QLP0mulGrpPvar1Rcoe10PLP0mulGrpPvar1R=ifa=bcoe1QLP0mulGrpPvar1R0P
74 73 adantr NFinRRingL0QEaNbNifa=bcoe1QLP0mulGrpPvar1Rcoe10PLP0mulGrpPvar1R=ifa=bcoe1QLP0mulGrpPvar1R0P
75 35 74 eqtrid NFinRRingL0QEaNbNifa=bcoe1QLcoe10PLP0mulGrpPvar1R=ifa=bcoe1QLP0mulGrpPvar1R0P
76 simpr NFinRRingL0QEL0QE
77 76 ancomd NFinRRingL0QEQEL0
78 eqid coe1Q=coe1Q
79 78 12 1 11 coe1fvalcl QEL0coe1QLK
80 77 79 syl NFinRRingL0QEcoe1QLK
81 65 eqcomd RRingScalarP=R
82 81 adantl NFinRRingScalarP=R
83 82 fveq2d NFinRRingBaseScalarP=BaseR
84 83 11 eqtr4di NFinRRingBaseScalarP=K
85 84 eleq2d NFinRRingcoe1QLBaseScalarPcoe1QLK
86 85 adantr NFinRRingL0QEcoe1QLBaseScalarPcoe1QLK
87 80 86 mpbird NFinRRingL0QEcoe1QLBaseScalarP
88 eqid BaseScalarP=BaseScalarP
89 eqid 1P=1P
90 10 60 88 61 89 asclval coe1QLBaseScalarPUcoe1QL=coe1QLP1P
91 87 90 syl NFinRRingL0QEUcoe1QL=coe1QLP1P
92 1 56 49 51 ply1idvr1 RRing0mulGrpPvar1R=1P
93 92 eqcomd RRing1P=0mulGrpPvar1R
94 93 ad2antlr NFinRRingL0QE1P=0mulGrpPvar1R
95 94 oveq2d NFinRRingL0QEcoe1QLP1P=coe1QLP0mulGrpPvar1R
96 91 95 eqtr2d NFinRRingL0QEcoe1QLP0mulGrpPvar1R=Ucoe1QL
97 96 ifeq1d NFinRRingL0QEifa=bcoe1QLP0mulGrpPvar1R0P=ifa=bUcoe1QL0P
98 97 adantr NFinRRingL0QEaNbNifa=bcoe1QLP0mulGrpPvar1R0P=ifa=bUcoe1QL0P
99 34 75 98 3eqtrd NFinRRingL0QEaNbNcoe1aMbLP0mulGrpPvar1R=ifa=bUcoe1QL0P