Metamath Proof Explorer


Theorem coe1z

Description: The coefficient vector of 0. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses coe1z.p P=Poly1R
coe1z.z 0˙=0P
coe1z.y Y=0R
Assertion coe1z RRingcoe10˙=0×Y

Proof

Step Hyp Ref Expression
1 coe1z.p P=Poly1R
2 coe1z.z 0˙=0P
3 coe1z.y Y=0R
4 fconst6g a01𝑜×a:1𝑜0
5 4 adantl RRinga01𝑜×a:1𝑜0
6 nn0ex 0V
7 1oex 1𝑜V
8 6 7 elmap 1𝑜×a01𝑜1𝑜×a:1𝑜0
9 5 8 sylibr RRinga01𝑜×a01𝑜
10 eqidd RRinga01𝑜×a=a01𝑜×a
11 eqid 1𝑜mPolyR=1𝑜mPolyR
12 psr1baslem 01𝑜=c01𝑜|c-1Fin
13 11 1 2 ply1mpl0 0˙=01𝑜mPolyR
14 1on 1𝑜On
15 14 a1i RRing1𝑜On
16 ringgrp RRingRGrp
17 11 12 3 13 15 16 mpl0 RRing0˙=01𝑜×Y
18 fconstmpt 01𝑜×Y=b01𝑜Y
19 17 18 eqtrdi RRing0˙=b01𝑜Y
20 eqidd b=1𝑜×aY=Y
21 9 10 19 20 fmptco RRing0˙a01𝑜×a=a0Y
22 1 ply1ring RRingPRing
23 eqid BaseP=BaseP
24 23 2 ring0cl PRing0˙BaseP
25 eqid coe10˙=coe10˙
26 eqid a01𝑜×a=a01𝑜×a
27 25 23 1 26 coe1fval2 0˙BasePcoe10˙=0˙a01𝑜×a
28 22 24 27 3syl RRingcoe10˙=0˙a01𝑜×a
29 fconstmpt 0×Y=a0Y
30 29 a1i RRing0×Y=a0Y
31 21 28 30 3eqtr4d RRingcoe10˙=0×Y