Metamath Proof Explorer


Theorem coe1add

Description: The coefficient vector of an addition. (Contributed by Stefan O'Rear, 24-Mar-2015)

Ref Expression
Hypotheses coe1add.y Y = Poly 1 R
coe1add.b B = Base Y
coe1add.p ˙ = + Y
coe1add.q + ˙ = + R
Assertion coe1add R Ring F B G B coe 1 F ˙ G = coe 1 F + ˙ f coe 1 G

Proof

Step Hyp Ref Expression
1 coe1add.y Y = Poly 1 R
2 coe1add.b B = Base Y
3 coe1add.p ˙ = + Y
4 coe1add.q + ˙ = + R
5 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
6 eqid PwSer 1 R = PwSer 1 R
7 1 6 2 ply1bas B = Base 1 𝑜 mPoly R
8 1 5 3 ply1plusg ˙ = + 1 𝑜 mPoly R
9 simp2 R Ring F B G B F B
10 simp3 R Ring F B G B G B
11 5 7 4 8 9 10 mpladd R Ring F B G B F ˙ G = F + ˙ f G
12 11 coeq1d R Ring F B G B F ˙ G a 0 1 𝑜 × a = F + ˙ f G a 0 1 𝑜 × a
13 eqid Base R = Base R
14 1 2 13 ply1basf F B F : 0 1 𝑜 Base R
15 14 ffnd F B F Fn 0 1 𝑜
16 15 3ad2ant2 R Ring F B G B F Fn 0 1 𝑜
17 1 2 13 ply1basf G B G : 0 1 𝑜 Base R
18 17 ffnd G B G Fn 0 1 𝑜
19 18 3ad2ant3 R Ring F B G B G Fn 0 1 𝑜
20 df1o2 1 𝑜 =
21 nn0ex 0 V
22 0ex V
23 eqid a 0 1 𝑜 × a = a 0 1 𝑜 × a
24 20 21 22 23 mapsnf1o3 a 0 1 𝑜 × a : 0 1-1 onto 0 1 𝑜
25 f1of a 0 1 𝑜 × a : 0 1-1 onto 0 1 𝑜 a 0 1 𝑜 × a : 0 0 1 𝑜
26 24 25 mp1i R Ring F B G B a 0 1 𝑜 × a : 0 0 1 𝑜
27 ovexd R Ring F B G B 0 1 𝑜 V
28 21 a1i R Ring F B G B 0 V
29 inidm 0 1 𝑜 0 1 𝑜 = 0 1 𝑜
30 16 19 26 27 27 28 29 ofco R Ring F B G B F + ˙ f G a 0 1 𝑜 × a = F a 0 1 𝑜 × a + ˙ f G a 0 1 𝑜 × a
31 12 30 eqtrd R Ring F B G B F ˙ G a 0 1 𝑜 × a = F a 0 1 𝑜 × a + ˙ f G a 0 1 𝑜 × a
32 1 ply1ring R Ring Y Ring
33 2 3 ringacl Y Ring F B G B F ˙ G B
34 32 33 syl3an1 R Ring F B G B F ˙ G B
35 eqid coe 1 F ˙ G = coe 1 F ˙ G
36 35 2 1 23 coe1fval2 F ˙ G B coe 1 F ˙ G = F ˙ G a 0 1 𝑜 × a
37 34 36 syl R Ring F B G B coe 1 F ˙ G = F ˙ G a 0 1 𝑜 × a
38 eqid coe 1 F = coe 1 F
39 38 2 1 23 coe1fval2 F B coe 1 F = F a 0 1 𝑜 × a
40 39 3ad2ant2 R Ring F B G B coe 1 F = F a 0 1 𝑜 × a
41 eqid coe 1 G = coe 1 G
42 41 2 1 23 coe1fval2 G B coe 1 G = G a 0 1 𝑜 × a
43 42 3ad2ant3 R Ring F B G B coe 1 G = G a 0 1 𝑜 × a
44 40 43 oveq12d R Ring F B G B coe 1 F + ˙ f coe 1 G = F a 0 1 𝑜 × a + ˙ f G a 0 1 𝑜 × a
45 31 37 44 3eqtr4d R Ring F B G B coe 1 F ˙ G = coe 1 F + ˙ f coe 1 G