| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1add.y |
|- Y = ( Poly1 ` R ) |
| 2 |
|
coe1add.b |
|- B = ( Base ` Y ) |
| 3 |
|
coe1add.p |
|- .+b = ( +g ` Y ) |
| 4 |
|
coe1add.q |
|- .+ = ( +g ` R ) |
| 5 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
| 6 |
1 2
|
ply1bas |
|- B = ( Base ` ( 1o mPoly R ) ) |
| 7 |
1 5 3
|
ply1plusg |
|- .+b = ( +g ` ( 1o mPoly R ) ) |
| 8 |
|
simp2 |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> F e. B ) |
| 9 |
|
simp3 |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> G e. B ) |
| 10 |
5 6 4 7 8 9
|
mpladd |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( F .+b G ) = ( F oF .+ G ) ) |
| 11 |
10
|
coeq1d |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( ( F .+b G ) o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) = ( ( F oF .+ G ) o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) |
| 12 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 13 |
1 2 12
|
ply1basf |
|- ( F e. B -> F : ( NN0 ^m 1o ) --> ( Base ` R ) ) |
| 14 |
13
|
ffnd |
|- ( F e. B -> F Fn ( NN0 ^m 1o ) ) |
| 15 |
14
|
3ad2ant2 |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> F Fn ( NN0 ^m 1o ) ) |
| 16 |
1 2 12
|
ply1basf |
|- ( G e. B -> G : ( NN0 ^m 1o ) --> ( Base ` R ) ) |
| 17 |
16
|
ffnd |
|- ( G e. B -> G Fn ( NN0 ^m 1o ) ) |
| 18 |
17
|
3ad2ant3 |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> G Fn ( NN0 ^m 1o ) ) |
| 19 |
|
df1o2 |
|- 1o = { (/) } |
| 20 |
|
nn0ex |
|- NN0 e. _V |
| 21 |
|
0ex |
|- (/) e. _V |
| 22 |
|
eqid |
|- ( a e. NN0 |-> ( 1o X. { a } ) ) = ( a e. NN0 |-> ( 1o X. { a } ) ) |
| 23 |
19 20 21 22
|
mapsnf1o3 |
|- ( a e. NN0 |-> ( 1o X. { a } ) ) : NN0 -1-1-onto-> ( NN0 ^m 1o ) |
| 24 |
|
f1of |
|- ( ( a e. NN0 |-> ( 1o X. { a } ) ) : NN0 -1-1-onto-> ( NN0 ^m 1o ) -> ( a e. NN0 |-> ( 1o X. { a } ) ) : NN0 --> ( NN0 ^m 1o ) ) |
| 25 |
23 24
|
mp1i |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( a e. NN0 |-> ( 1o X. { a } ) ) : NN0 --> ( NN0 ^m 1o ) ) |
| 26 |
|
ovexd |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( NN0 ^m 1o ) e. _V ) |
| 27 |
20
|
a1i |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> NN0 e. _V ) |
| 28 |
|
inidm |
|- ( ( NN0 ^m 1o ) i^i ( NN0 ^m 1o ) ) = ( NN0 ^m 1o ) |
| 29 |
15 18 25 26 26 27 28
|
ofco |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( ( F oF .+ G ) o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) = ( ( F o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) oF .+ ( G o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) ) |
| 30 |
11 29
|
eqtrd |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( ( F .+b G ) o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) = ( ( F o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) oF .+ ( G o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) ) |
| 31 |
1
|
ply1ring |
|- ( R e. Ring -> Y e. Ring ) |
| 32 |
2 3
|
ringacl |
|- ( ( Y e. Ring /\ F e. B /\ G e. B ) -> ( F .+b G ) e. B ) |
| 33 |
31 32
|
syl3an1 |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( F .+b G ) e. B ) |
| 34 |
|
eqid |
|- ( coe1 ` ( F .+b G ) ) = ( coe1 ` ( F .+b G ) ) |
| 35 |
34 2 1 22
|
coe1fval2 |
|- ( ( F .+b G ) e. B -> ( coe1 ` ( F .+b G ) ) = ( ( F .+b G ) o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) |
| 36 |
33 35
|
syl |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` ( F .+b G ) ) = ( ( F .+b G ) o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) |
| 37 |
|
eqid |
|- ( coe1 ` F ) = ( coe1 ` F ) |
| 38 |
37 2 1 22
|
coe1fval2 |
|- ( F e. B -> ( coe1 ` F ) = ( F o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) |
| 39 |
38
|
3ad2ant2 |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` F ) = ( F o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) |
| 40 |
|
eqid |
|- ( coe1 ` G ) = ( coe1 ` G ) |
| 41 |
40 2 1 22
|
coe1fval2 |
|- ( G e. B -> ( coe1 ` G ) = ( G o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) |
| 42 |
41
|
3ad2ant3 |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` G ) = ( G o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) |
| 43 |
39 42
|
oveq12d |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) = ( ( F o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) oF .+ ( G o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) ) |
| 44 |
30 36 43
|
3eqtr4d |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` ( F .+b G ) ) = ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) ) |