Metamath Proof Explorer


Theorem mpl0

Description: The zero polynomial. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypotheses mpl0.p P=ImPolyR
mpl0.d D=f0I|f-1Fin
mpl0.o O=0R
mpl0.z 0˙=0P
mpl0.i φIW
mpl0.r φRGrp
Assertion mpl0 φ0˙=D×O

Proof

Step Hyp Ref Expression
1 mpl0.p P=ImPolyR
2 mpl0.d D=f0I|f-1Fin
3 mpl0.o O=0R
4 mpl0.z 0˙=0P
5 mpl0.i φIW
6 mpl0.r φRGrp
7 eqid ImPwSerR=ImPwSerR
8 eqid BaseP=BaseP
9 7 1 8 5 6 mplsubg φBasePSubGrpImPwSerR
10 1 7 8 mplval2 P=ImPwSerR𝑠BaseP
11 eqid 0ImPwSerR=0ImPwSerR
12 10 11 subg0 BasePSubGrpImPwSerR0ImPwSerR=0P
13 9 12 syl φ0ImPwSerR=0P
14 7 5 6 2 3 11 psr0 φ0ImPwSerR=D×O
15 13 14 eqtr3d φ0P=D×O
16 4 15 eqtrid φ0˙=D×O