Metamath Proof Explorer


Theorem mplplusg

Description: Value of addition in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mplplusg.y Y=ImPolyR
mplplusg.s S=ImPwSerR
mplplusg.p +˙=+Y
Assertion mplplusg +˙=+S

Proof

Step Hyp Ref Expression
1 mplplusg.y Y=ImPolyR
2 mplplusg.s S=ImPwSerR
3 mplplusg.p +˙=+Y
4 fvex BaseYV
5 eqid BaseY=BaseY
6 1 2 5 mplval2 Y=S𝑠BaseY
7 eqid +S=+S
8 6 7 ressplusg BaseYV+S=+Y
9 4 8 ax-mp +S=+Y
10 3 9 eqtr4i +˙=+S